New optimization method for steered fiber composites using the level set method

Advanced fiber placement (AFP) composite manufacturing technology offers a means to tailor composite fibers for complex loading environments and significantly improve the overall structural efficiency. This paper introduces a new method to optimize the continuously varying fiber paths for AFP using a level set method. The paths of the fibers are defined by constant level set function values, describing a series of continuous equally spaced fiber paths. The sensitivity of the structural compliance to a change in level set function definition of the fiber path is derived. The sensitivities are used to optimize the level set defined fiber paths to minimize structural compliance, while maintaining the continuous fiber paths and producing a solution that can be manufactured using AFP. The optimization method is demonstrated in three numerical studies.

[1]  Christos Kassapoglou,et al.  Generating realistic laminate fiber angle distributions for optimal variable stiffness laminates , 2012 .

[2]  Paul M. Weaver,et al.  Optimal Design of Postbuckling Behaviour of Laminated Composite Plates using Lamination Parameters , 2014 .

[3]  P. Pedersen On optimal orientation of orthotropic materials , 1989 .

[4]  K. Wu,et al.  Design and Analysis of Tow-Steered Composite Shells Using Fiber Placement , 2008 .

[5]  Raphael T. Haftka,et al.  Design and optimization of laminated composite materials , 1999 .

[6]  Erik Lund,et al.  Discrete material optimization of general composite shell structures , 2005 .

[7]  Damiano Pasini,et al.  Optimum stacking sequence design of composite materials Part II: Variable stiffness design , 2010 .

[8]  R. Olmedo,et al.  Composite laminates with spatially varying fiber orientations - 'Variable stiffness panel concept' , 1992 .

[9]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[10]  H. Alicia Kim,et al.  A new hole insertion method for level set based structural topology optimization , 2013 .

[11]  S. Torquato,et al.  Design of materials with extreme thermal expansion using a three-phase topology optimization method , 1997 .

[12]  Carlos Alberto Conceição António,et al.  A hierarchical genetic algorithm with age structure for multimodal optimal design of hybrid composites , 2006 .

[13]  Paul M. Weaver,et al.  Buckling analysis and optimisation of variable angle tow composite plates , 2012 .

[14]  Martin P. Bendsøe,et al.  Parametrization in Laminate Design for Optimal Compliance , 1997 .

[15]  M. Bendsøe,et al.  Shape optimization of structures for multiple loading conditions using a homogenization method , 1992 .

[16]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[17]  Paul M. Weaver,et al.  Feasible region of lamination parameters for optimisation of variable angle tow (VAT) composite plates , 2013 .

[18]  Glen Mullineux,et al.  Investigation and improvement of sensitivity computation using the area-fraction weighted fixed grid FEM and structural optimization , 2011 .

[19]  Pauli Pedersen,et al.  On thickness and orientational design with orthotropic materials , 1991 .

[20]  Z. Gürdal,et al.  Design of variable stiffness composite panels for maximum fundamental frequency using lamination parameters , 2007 .

[21]  Tong Gao,et al.  A bi‐value coding parameterization scheme for the discrete optimal orientation design of the composite laminate , 2012 .

[22]  Don Kelly,et al.  On the design, manufacture and testing of trajectorial fibre steering for carbon fibre composite laminates☆ , 2000 .

[23]  Michaël Bruyneel,et al.  SFP—a new parameterization based on shape functions for optimal material selection: application to conventional composite plies , 2011 .

[24]  K. Potter,et al.  The engineering aspects of automated prepreg layup: History, present and future , 2012 .

[25]  Chang-Sun Hong,et al.  Optimum design of composite structures with ply drop using genetic algorithm and expert system shell , 1999 .

[26]  Paul M. Weaver,et al.  Continuous tow shearing for manufacturing variable angle tow composites , 2012 .

[27]  Hae Chang Gea,et al.  Optimal bead orientation of 3D shell/plate structures , 1998 .

[28]  Erik Lund,et al.  Buckling topology optimization of laminated multi-material composite shell structures , 2009 .

[29]  Z. Gürdal,et al.  In-plane response of laminates with spatially varying fiber orientations - Variable stiffness concept , 1993 .

[30]  R. Haftka,et al.  Optimization of fiber orientations near a hole for increased load-carrying capacity of composite laminates , 2005 .

[31]  Zafer Gürdal,et al.  Design of variable–stiffness laminates using lamination parameters , 2006 .

[32]  H. Gea,et al.  Optimal orientation of orthotropic materials using an energy based method , 1998 .

[33]  Michael W. Hyer,et al.  Use of Material Tailoring to Improve Buckling Capacity of Elliptical Composite Cylinders , 2007 .

[34]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[35]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[36]  Raphael T. Haftka,et al.  Composite wing structural design optimization with continuity constraints , 2001 .

[37]  D. Keller,et al.  Optimization of ply angles in laminated composite structures by a hybrid, asynchronous, parallel evolutionary algorithm , 2010 .

[38]  Samuel T. IJsselmuiden,et al.  Design of variable-stiffness composite panels for maximum buckling load , 2009 .

[39]  J. Pintér Global optimization : scientific and engineering case studies , 2006 .

[40]  Zafer Gürdal,et al.  Design of variable stiffness panels for maximum strength using lamination parameters , 2011 .

[41]  Paul M. Weaver,et al.  Prebuckling and buckling analysis of variable angle tow plates with general boundary conditions , 2012 .

[42]  Layne T. Watson,et al.  Design of variable-stiffness composite layers using cellular automata , 2006 .