G2o: A general framework for graph optimization

Many popular problems in robotics and computer vision including various types of simultaneous localization and mapping (SLAM) or bundle adjustment (BA) can be phrased as least squares optimization of an error function that can be represented by a graph. This paper describes the general structure of such problems and presents g2o, an open-source C++ framework for optimizing graph-based nonlinear error functions. Our system has been designed to be easily extensible to a wide range of problems and a new problem typically can be specified in a few lines of code. The current implementation provides solutions to several variants of SLAM and BA. We provide evaluations on a wide range of real-world and simulated datasets. The results demonstrate that while being general g2o offers a performance comparable to implementations of state-of-the-art approaches for the specific problems.

[1]  Richard Szeliski,et al.  Pushing the Envelope of Modern Methods for Bundle Adjustment , 2012, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Kurt Konolige,et al.  Large-Scale Map-Making , 2004, AAAI.

[3]  Stephen R. Marsland,et al.  Fast, On-Line Learning of Globally Consistent Maps , 2002, Auton. Robots.

[4]  Hauke Strasdat,et al.  Scale Drift-Aware Large Scale Monocular SLAM , 2010, Robotics: Science and Systems.

[5]  Winston Churchill,et al.  The New College Vision and Laser Data Set , 2009, Int. J. Robotics Res..

[6]  Martin Byröd,et al.  Conjugate Gradient Bundle Adjustment , 2010, ECCV.

[7]  Frank Dellaert,et al.  Multi-level submap based SLAM using nested dissection , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Jennifer A. Scott,et al.  Algorithm 891: A Fortran virtual memory system , 2009, TOMS.

[9]  Peter C. Cheeseman,et al.  Estimating uncertain spatial relationships in robotics , 1986, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[10]  Frank Dellaert,et al.  Incremental smoothing and mapping , 2008 .

[11]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[12]  William H. Press,et al.  Numerical recipes , 1990 .

[13]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[14]  Frank Dellaert,et al.  Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing , 2006, Int. J. Robotics Res..

[15]  Udo Frese A Proof for the Approximate Sparsity of SLAM Information Matrices , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[16]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[17]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[18]  Tom Duckett,et al.  A multilevel relaxation algorithm for simultaneous localization and mapping , 2005, IEEE Transactions on Robotics.

[19]  Wolfram Burgard,et al.  Efficient Sparse Pose Adjustment for 2D mapping , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  Richard Szeliski,et al.  Bundle Adjustment in the Large , 2010, ECCV.

[21]  Cyrill Stachniss,et al.  Hierarchical optimization on manifolds for online 2D and 3D mapping , 2010, 2010 IEEE International Conference on Robotics and Automation.

[22]  Manolis I. A. Lourakis,et al.  SBA: A software package for generic sparse bundle adjustment , 2009, TOMS.

[23]  Patrick H. Worley,et al.  Algorithm 888: Spherical Harmonic Transform Algorithms , 2008, TOMS.

[24]  Wolfram Burgard,et al.  Nonlinear Constraint Network Optimization for Efficient Map Learning , 2009, IEEE Transactions on Intelligent Transportation Systems.

[25]  Edwin Olson,et al.  Fast iterative alignment of pose graphs with poor initial estimates , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[26]  Kurt Konolige,et al.  Sparse Sparse Bundle Adjustment , 2010, BMVC.

[27]  Randall Smith,et al.  Estimating Uncertain Spatial Relationships in Robotics , 1987, Autonomous Robot Vehicles.

[28]  Sebastian Thrun,et al.  Large-Scale Robotic 3-D Mapping of Urban Structures , 2004, ISER.

[29]  Gaurav S. Sukhatme,et al.  Relaxation on a mesh: a formalism for generalized localization , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[30]  Frank Dellaert,et al.  iSAM: Incremental Smoothing and Mapping , 2008, IEEE Transactions on Robotics.