A deep Chandra survey of the Groth Strip – II. Optical identification of the X‐ray sources

In this paper, we discuss the optical and X-ray spectral properties of the sources detected in a single 200-ks Chandra pointing in the Groth-Westphal Strip region. A wealth of optical photometric and spectroscopic data are available in this field providing optical identifications and redshift determinations for the X-ray population. The optical photometry and spectroscopy used here are primarily from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) survey with additional redshifts obtained from the literature. These are complemented with the deeper (r ≈ 26 mag) multiwaveband data (ugriz) from the Canada–France–Hawaii Telescope Legacy Survey to estimate photometric redshifts and to optically identify sources fainter than the DEEP2 magnitude limit (R_(AB)≈ 24.5 mag). We focus our study on the 2–10 keV selected sample comprising 97 sources to the limit ≈ 8 × 10^(−1)6 erg s^(−1) cm^(−2), this being the most complete in terms of optical identification rate (86 per cent) and redshift determination fraction (63 per cent; both spectroscopic and photometric). We first construct the redshift distribution of the sample which shows a peak at z≈ 1. This is in broad agreement with models where less luminous active galactic nuclei (AGNs) evolve out to z≈ 1 with powerful quasi-stellar objects (QSOs) peaking at higher redshift, z≈ 2. Evolution similar to that of broad-line QSOs applied to the entire AGN population (both types I and II) does not fit the data. We also explore the observedNH distribution of the sample and estimate a fraction of obscured AGN (N_H > 10^(22) cm^(−2)) of 48 ± 9 per cent. This is found to be consistent with both a luminosity-dependent intrinsic N_H distribution, where less luminous systems comprise a higher fraction of type II AGNs and models with a fixed ratio 2:1 between types I and II AGNs. We further compare our results with those obtained in deeper and shallower surveys. We argue that a luminosity-dependent parametrization of the intrinsic NH distribution is required to account for the fraction of obscured AGN observed in different samples over a wide range of fluxes.

[1]  Pittsburgh,et al.  The Phoenix Deep Survey: the radio properties of the hard X-ray-selected sample , 2004, astro-ph/0407078.

[2]  A. Lawrence The relative frequency of broad-lined and narrow-lined active galactic nuclei: implications for unified schemes , 1991 .

[3]  A. Connolly,et al.  Star Formation in Galaxies between Redshifts of 0.7 and 1.8 , 2000 .

[4]  Silvano Molendi,et al.  The HELLAS2XMM 1dF Survey: On the Nature of High X-Ray/Optical Flux Sources , 2004 .

[5]  John A. Peacock,et al.  The Parkes selected regions: powerful radio galaxies and quasars at high redshifts , 1986 .

[6]  P. Ciliegi,et al.  The HELLAS2XMM survey - VI. X-ray absorption in the 1df AGN sample through a spectral analysis , 2004 .

[7]  J. Rhodes,et al.  A deep Chandra survey of the Groth Strip - I. The X-ray data , 2004, astro-ph/0410149.

[8]  G. Hasinger,et al.  Testing current synthesis models of the X-ray background , 2000, astro-ph/0011341.

[9]  W. Brandt,et al.  The Chandra Deep Field North Survey. XII. The Link between Faint X-Ray and Radio Source Populations , 2002, astro-ph/0207433.

[10]  J. Turner X‐ray spectra of a large sample of quasars with ASCA , 2000, astro-ph/0003080.

[11]  P. Capak,et al.  The Cosmic Evolution of Hard X-Ray-selected Active Galactic Nuclei , 2004, astro-ph/0410527.

[12]  The XMM Newton/2dF Survey - IV. The X-ray spectral properties of the hard sources , 2004, astro-ph/0404048.

[13]  Robert Antonucci,et al.  Unified models for active galactic nuclei and quasars , 1993 .

[14]  P. Ciliegi,et al.  The HELLAS2XMM survey V. Near-Infrared observations of X-ray sources with extreme X/O ratios , 2004 .

[15]  A. C. Fabian,et al.  X-ray background synthesis: the infrared connection , 2002, astro-ph/0211129.

[16]  J. Newman,et al.  Evolution and Color Dependence of the Galaxy Angular Correlation Function: 350,000 Galaxies in 5 Square Degrees , 2004, astro-ph/0403423.

[17]  C. S. Crawford,et al.  Powerful, obscured active galactic nuclei among X-ray hard, optically dim serendipitous Chandra sources , 2003, astro-ph/0310772.

[18]  S. Charlot,et al.  Spectral evolution of stellar populations using isochrone synthesis , 1993 .

[19]  Andrew C. Fabian,et al.  X-ray reflection from cold matter in Active Galactic Nuclei and X-ray binaries , 1991 .

[20]  W. Cash,et al.  Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques , 1979 .

[21]  D. Elbaz,et al.  The AGN contribution to mid-infrared surveys. X-ray counterparts of the mid-IR sources in the Lockman Hole and HDF-N , 2001, astro-ph/0111412.

[22]  Roberto Gilmozzi,et al.  Chandra Deep Field South: The 1 Ms Catalog , 2002 .

[23]  Dan McCammon,et al.  Interstellar photoelectric absorption cross-sections, 0.03-10 keV , 1983 .

[24]  D. M. Alexander,et al.  The Chandra Deep Field North Survey. XIII. 2 Ms Point-Source Catalogs , 2003, astro-ph/0304392.

[25]  D. M. Alexander,et al.  The Chandra Deep Field North Survey. VI. The Nature of the Optically Faint X-Ray Source Population , 2001 .

[26]  D. M. Alexander,et al.  Infrared Number Counts of AGN in the GOODS Fields , 2004 .

[27]  M. Irwin,et al.  ImpZ: a new photometric redshift code for galaxies and quasars , 2004, astro-ph/0406296.

[28]  Roberto Gilmozzi,et al.  The Chandra Deep Field-South: The 1 Million Second Exposure* , 2002 .

[29]  D. R. Ballantyne,et al.  Connecting Galaxy Evolution, Star Formation, and the Cosmic X-Ray Background , 2005, astro-ph/0509356.

[30]  G. Starkman,et al.  Axiorecombination: A New Mechanism for Stellar Axion Production , 1986 .

[31]  K. Nandra,et al.  GINGA observations of the X-ray spectra of Seyfert galaxies. , 1994 .

[32]  G. Hasinger,et al.  Luminosity-dependent evolution of soft X-ray selected AGN : New Chandra and XMM-Newton surveys , 2005, astro-ph/0506118.

[33]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[34]  P. Ciliegi,et al.  The HELLAS2XMM Survey. VII. The Hard X-Ray Luminosity Function of AGNs up to z = 4: More Absorbed AGNs at Low Luminosities and High Redshifts , 2005, astro-ph/0509081.

[35]  C. Megan Urry,et al.  Obscured Active Galactic Nuclei and the X-Ray, Optical, and Far-Infrared Number Counts of Active Galactic Nuclei in the GOODS Fields , 2004 .

[36]  George H. Rieke,et al.  Low-luminosity and obscured seyfert nuclei in nearby galaxies , 1995 .

[37]  Takamitsu Miyaji,et al.  Cosmological Evolution of the Hard X-Ray Active Galactic Nucleus Luminosity Function and the Origin of the Hard X-Ray Background , 2003, astro-ph/0308140.

[38]  R. Windhorst,et al.  The micro-jansky radio source population at 5 GHz , 1991 .

[39]  D. M. Alexander,et al.  Optical and Infrared Properties of the 2 Ms Chandra Deep Field North X-Ray Sources , 2003, astro-ph/0306212.

[40]  Garth D. Illingworth,et al.  The DEEP Groth Strip Survey. I. The Sample , 2005, astro-ph/0503376.

[41]  A. Georgakakis,et al.  Red active galactic nuclei in XMM–Newton/Sloan Digital Sky Survey fields , 2006 .

[42]  A. Zdziarski,et al.  Angle-dependent Compton reflection of X-rays and gamma-rays , 1995 .

[43]  Karl Glazebrook,et al.  Hubble Space Telescope Imaging of the CFRS and LDSS Redshift Surveys. I. Morphological Properties , 1998 .

[44]  S. J. Lilly,et al.  The Canada-France Redshift Survey. I. Introduction to the Survey, Photometric Catalogs, and Surface Brightness Selection Effects , 1995 .

[45]  Francesca Civano,et al.  X-ray spectral analysis of optically faint sources in the Chandra deep fields , 2005, astro-ph/0501397.

[46]  P. Ciliegi,et al.  The HELLAS2XMM survey IV. Optical identifications and the evolution of the accretion luminosity in the Universe , 2003, astro-ph/0306556.

[47]  C. Megan Urry,et al.  Active Galactic Nuclei Unification and the X-Ray Background , 2005 .

[48]  Loretta Dunne,et al.  The Canada-UK Deep Submillimeter Survey. VII. Optical and Near-Infrared Identifications for the 14 Hour Field , 2003, astro-ph/0308439.

[49]  A. Kinney,et al.  Template ultraviolet to near-infrared spectra of star-forming galaxies and their application to K-corrections , 1996 .

[50]  R. Maiolino,et al.  The Distribution of Absorbing Column Densities among Seyfert 2 Galaxies , 1999, astro-ph/9902377.

[51]  M. Pettini,et al.  A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview , 2004, astro-ph/0401439.

[52]  A. Franceschini,et al.  Origin of the X-ray background and AGN unification: new perspectives , 2002, astro-ph/0205529.

[53]  F. R. Harnden,et al.  Chandra Multiwavelength Project. I. First X-Ray Source Catalog , 2003, astro-ph/0308492.

[54]  D. M. Alexander,et al.  The Chandra Deep Field North Survey. V. 1 Ms Source Catalogs , 2001, astro-ph/0108404.

[55]  Astrophysics,et al.  The HELLAS2XMM Survey. I. The X-Ray Data and the log N-log S Relation , 2001, astro-ph/0108514.

[56]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[57]  Chandra observations of nuclear X-ray emission from a sample of radio sources , 2003, astro-ph/0302265.

[58]  THE DEEP GROTH STRIP GALAXY REDSHIFT SURVEY. III. REDSHIFT CATALOG AND PROPERTIES OF GALAXIES , 2004, astro-ph/0411128.

[59]  D. Weedman,et al.  Colors and magnitudes predicted for high redshift galaxies , 1980 .

[60]  J. Matteson,et al.  The Spectrum of Diffuse Cosmic Hard X-Rays Measured with HEAO 1 , 1999, astro-ph/9903492.

[61]  C. Megan Urry,et al.  The Extended Chandra Deep Field-South Survey: X-Ray Point-Source Catalog , 2006 .

[62]  D. M. Alexander,et al.  The Extended Chandra Deep Field-South Survey: Chandra Point-Source Catalogs , 2005, astro-ph/0506607.

[63]  Germany,et al.  On the use of photometric redshifts for X-ray selected AGNs , 2004, astro-ph/0406346.

[64]  S. J. Lilly,et al.  HST imaging of CFRS and LDSS galaxies - I: Morphological Properties , 1997 .

[65]  Chris Simpson,et al.  The luminosity dependence of the type 1 active galactic nucleus fraction , 2005 .