Using N-Gram Graphs for Sentiment Analysis: An Extended Study on Twitter

Tackling the challenges posed by Social Networking content and addressing its casual nature, n-gram graphs technique provides a language-independent supervised approach for text mining. Adopting this data analysis model, this paper provides an extended study of sentiment analysis, using a multilingual and multi-topic environment, employing and combining different classification algorithms, and attempting various configuration approaches on classification parameters to increase the efficiency. Compared to results found on big corpora used in previous studies, the outcome of the current paper implies a high classification accuracy and an enhanced validity, since the current experiments use datasets processed by human annotators.

[1]  Junlan Feng,et al.  Robust Sentiment Detection on Twitter from Biased and Noisy Data , 2010, COLING.

[2]  Theodora Varvarigou,et al.  Sentiment analysis of social media content using N-Gram graphs , 2011, WSM '11.

[3]  Patrick Paroubek,et al.  Twitter as a Corpus for Sentiment Analysis and Opinion Mining , 2010, LREC.

[4]  George Papadakis,et al.  Content vs. context for sentiment analysis: a comparative analysis over microblogs , 2012, HT '12.

[5]  Minyi Guo,et al.  Emoticon Smoothed Language Models for Twitter Sentiment Analysis , 2012, AAAI.

[6]  Tobias Günther,et al.  GU-MLT-LT: Sentiment Analysis of Short Messages using Linguistic Features and Stochastic Gradient Descent , 2013, *SEMEVAL.

[7]  Li Bing,et al.  Public Sentiment Analysis in Twitter Data for Prediction of a Company's Stock Price Movements , 2014, 2014 IEEE 11th International Conference on e-Business Engineering.

[8]  Albert Bifet,et al.  Sentiment Knowledge Discovery in Twitter Streaming Data , 2010, Discovery Science.

[9]  Tiejun Zhao,et al.  Target-dependent Twitter Sentiment Classification , 2011, ACL.

[10]  Preslav Nakov,et al.  SemEval-2013 Task 2: Sentiment Analysis in Twitter , 2013, *SEMEVAL.

[11]  Deepali Arora,et al.  Analytics: Key to Go from Generating Big Data to Deriving Business Value , 2015, 2015 IEEE First International Conference on Big Data Computing Service and Applications.

[12]  José Carlos González,et al.  TASS - Workshop on Sentiment Analysis at SEPLN , 2013, Proces. del Leng. Natural.

[13]  Alan F. Smeaton,et al.  Classifying sentiment in microblogs: is brevity an advantage? , 2010, CIKM.

[14]  Wei Hu,et al.  Sentiment Analysis on the Social Networks Using Stream Algorithms , 2014 .

[15]  Johanna D. Moore,et al.  Twitter Sentiment Analysis: The Good the Bad and the OMG! , 2011, ICWSM.

[16]  Ming Zhou,et al.  Learning Sentiment-Specific Word Embedding for Twitter Sentiment Classification , 2014, ACL.

[17]  Harith Alani,et al.  Semantic smoothing for Twitter sentiment analysis , 2011 .

[18]  Ari Rappoport,et al.  Enhanced Sentiment Learning Using Twitter Hashtags and Smileys , 2010, COLING.

[19]  Saif Mohammad,et al.  NRC-Canada: Building the State-of-the-Art in Sentiment Analysis of Tweets , 2013, *SEMEVAL.

[20]  V. S. Subrahmanian,et al.  Using Twitter Sentiment to Forecast the 2013 Pakistani Election and the 2014 Indian Election , 2015, IEEE Intelligent Systems.

[21]  Giuseppe Porro,et al.  Every tweet counts? How sentiment analysis of social media can improve our knowledge of citizens’ political preferences with an application to Italy and France , 2013, New Media Soc..

[22]  David A. Shamma,et al.  Tweet the debates: understanding community annotation of uncollected sources , 2009, WSM@MM.

[23]  Owen Rambow,et al.  Sentiment Analysis of Twitter Data , 2011 .

[24]  Luisa Micó,et al.  Comparison of Classifier Fusion Methods for Classification in Pattern Recognition Tasks , 2006, SSPR/SPR.

[25]  Alessandro Moschitti,et al.  Efficient Convolution Kernels for Dependency and Constituent Syntactic Trees , 2006, ECML.

[26]  S. Albayrak,et al.  Language-Independent Twitter Sentiment Analysis , 2012 .

[27]  Michael I. Jordan,et al.  On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes , 2001, NIPS.

[28]  Constance Kampf,et al.  Using social media sentiment analysis to understand audiences: A new skill for technical communicators? , 2015, 2015 IEEE International Professional Communication Conference (IPCC).

[29]  George A. Vouros,et al.  Summarization system evaluation revisited: N-gram graphs , 2008, TSLP.