Finite-Length Scaling and Finite-Length Shift for Low-Density Parity-Check Codes

Consider communication over the binary erasure channel BEC using random low-density parity-check codes with finite-blocklength n from `standard' ensembles. We show that large error events is conveniently described within a scaling theory, and explain how to estimate heuristically their effect. Among other quantities, we consider the finite length threshold e(n), defined by requiring a block error probability P_B = 1/2. For ensembles with minimum variable degree larger than two, the following expression is argued to hold e(n) = e -e_1 n^{-2/3} +\Theta(n^{-1}) with a calculable shift} parameter e_1>0.

[1]  R. Blahut,et al.  Bit Error Rate Estimate of Finite Length Turbo Codes , 2003 .

[2]  Gérard D. Cohen,et al.  The threshold probability of a code , 1995, IEEE Trans. Inf. Theory.

[3]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[4]  Alon Orlitsky,et al.  Finite-length analysis of LDPC codes with large left degrees , 2002, Proceedings IEEE International Symposium on Information Theory,.

[5]  John A. Hertz,et al.  Quantum critical phenomena , 1976 .

[6]  T. Richrdson,et al.  Finite-length analysis of various low-density parity-check ensembles for the binary erasure channel , 2002, Proceedings IEEE International Symposium on Information Theory,.

[7]  Daniel A. Spielman,et al.  Practical loss-resilient codes , 1997, STOC '97.

[8]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[9]  R. E. Mills,et al.  Critical phenomena. , 1971, Science.