A Hierarchical Bayesian Model for Spatial Prediction of Multivariate Non‐Gaussian Random Fields

As most georeferenced data sets are multivariate and concern variables of different types, spatial mapping methods must be able to deal with such data. The main difficulties are the prediction of non-Gaussian variables and the modeling of the dependence between processes. The aim of this article is to present a new hierarchical Bayesian approach that permits simultaneous modeling of dependent Gaussian, count, and ordinal spatial fields. This approach is based on spatial generalized linear mixed models. We use a moving average approach to model the spatial dependence between the processes. The method is first validated through a simulation study. We show that the multivariate model has better predictive abilities than the univariate one. Then the multivariate spatial hierarchical model is applied to a real data set collected in French Guiana to predict topsoil patterns.

[1]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[2]  Ronald P. Barry,et al.  Constructing and fitting models for cokriging and multivariable spatial prediction , 1998 .

[3]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[4]  Mary Kathryn Cowles,et al.  Accelerating Monte Carlo Markov chain convergence for cumulative-link generalized linear models , 1996, Stat. Comput..

[5]  P. Diggle,et al.  Model-based geostatistics (with discussion). , 1998 .

[6]  J. Deckers,et al.  World Reference Base for Soil Resources , 1998 .

[7]  Hans Wackernagel,et al.  Multivariate Geostatistics: An Introduction with Applications , 1996 .

[8]  Ronald P. Barry,et al.  Blackbox Kriging: Spatial Prediction Without Specifying Variogram Models , 1996 .

[9]  E J Bedrick,et al.  Estimating the Mahalanobis Distance from Mixed Continuous and Discrete Data , 2000, Biometrics.

[10]  Christopher K. Wikle,et al.  Hierarchical Bayesian Models for Predicting The Spread of Ecological Processes , 2003 .

[11]  M. Musio,et al.  A spatial model for the needle losses of pine‐trees in the forests of Baden‐Württemberg: an application of Bayesian structured additive regression , 2007 .

[12]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[13]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[14]  H. Rue,et al.  Approximate Bayesian Inference in Spatial Generalized Linear Mixed Models , 2008 .

[15]  Jorge Miguel Chica Olmo,et al.  Prediction of Housing Location Price By a Multivariate Spatial Method: Cokriging , 2007 .

[16]  F. Mortier,et al.  Multivariate dynamic model for ordinal outcomes , 2008 .

[17]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[18]  Noel A Cressie,et al.  Some topics in convolution-based spatial modeling , 2007 .

[19]  V. D. Oliveira,et al.  Bayesian prediction of clipped Gaussian random fields , 2000 .

[20]  Stéphane Robin,et al.  Prediction of Euclidean distances with discrete and continuous outcomes , 2006 .

[21]  C. Varin On composite marginal likelihoods , 2008 .

[22]  B. Kedem,et al.  Bayesian Prediction of Transformed Gaussian Random Fields , 1997 .

[23]  J. Rosenthal,et al.  On adaptive Markov chain Monte Carlo algorithms , 2005 .

[24]  G. Matheron,et al.  A Simple Substitute for Conditional Expectation : The Disjunctive Kriging , 1976 .

[25]  Alan E. Gelfand,et al.  Multilevel modeling using spatial processes: Application to the Singapore housing market , 2007, Comput. Stat. Data Anal..

[26]  J. Zidek,et al.  Bayesian Spatial Prediction of Random Space-Time Fields With Application to Mapping PM2.5 Exposure , 2002 .

[27]  D. Higdon Space and Space-Time Modeling using Process Convolutions , 2002 .

[28]  H. Joe Multivariate models and dependence concepts , 1998 .

[29]  R. Wolpert,et al.  Poisson/gamma random field models for spatial statistics , 1998 .

[30]  Daniel Sabatier,et al.  The influence of soil cover organization on the floristic and structural heterogeneity of a Guianan rain forest , 1997, Plant Ecology.

[31]  I. Molchanov Statistics of the Boolean Model for Practitioners and Mathematicians , 1997 .

[32]  Ming-Hui Chen,et al.  Properties of Prior and Posterior Distributions for Multivariate Categorical Response Data Models , 1999 .

[33]  T. C. Haas,et al.  Model-based geostatistics. Discussion. Authors' reply , 1998 .

[34]  Ronald P. Barry,et al.  Flexible Spatial Models for Kriging and Cokriging Using Moving Averages and the Fast Fourier Transform (FFT) , 2004 .

[35]  R. Webster,et al.  Statistical Methods in Soil and Land Resource Survey. , 1990 .

[36]  R. Waagepetersen,et al.  Bayesian Prediction of Spatial Count Data Using Generalized Linear Mixed Models , 2002, Biometrics.

[37]  Sylvie Gourlet-Fleury,et al.  Ecology and management of a neotropical rainforest : lessons drawn from Paracou, a long-term experimental research site in French Guiana , 2004 .

[38]  S. Chib,et al.  Analysis of multivariate probit models , 1998 .

[39]  Y. Atchadé An Adaptive Version for the Metropolis Adjusted Langevin Algorithm with a Truncated Drift , 2006 .

[40]  G. Matheron Les variables régionalisées et leur estimation : une application de la théorie de fonctions aléatoires aux sciences de la nature , 1965 .

[41]  Alex B. McBratney,et al.  An overview of pedometric techniques for use in soil survey , 2000 .