Learning an augmentation strategy for sparse datasets

[1]  Ke Yan,et al.  Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks , 2019, Scientific Reports.

[2]  Quoc V. Le,et al.  AutoAugment: Learning Augmentation Strategies From Data , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Han Zhang,et al.  Self-Attention Generative Adversarial Networks , 2018, ICML.

[4]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Jianxiong Xiao,et al.  SUN RGB-D: A RGB-D scene understanding benchmark suite , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  George Papandreou,et al.  Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation , 2018, ECCV.

[7]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Jan Kautz,et al.  High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[9]  Timo Aila,et al.  A Style-Based Generator Architecture for Generative Adversarial Networks , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Alexander Schlaefer,et al.  SpeckleGAN: a generative adversarial network with an adaptive speckle layer to augment limited training data for ultrasound image processing , 2020, International Journal of Computer Assisted Radiology and Surgery.

[11]  Taghi M. Khoshgoftaar,et al.  A survey on Image Data Augmentation for Deep Learning , 2019, Journal of Big Data.

[12]  Jian Sun,et al.  Instance-Aware Semantic Segmentation via Multi-task Network Cascades , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Subhransu Maji,et al.  Semantic contours from inverse detectors , 2011, 2011 International Conference on Computer Vision.

[15]  Leon Sixt,et al.  RenderGAN: Generating Realistic Labeled Data , 2016, Front. Robot. AI.

[16]  Zengchang Qin,et al.  Emotion Classification with Data Augmentation Using Generative Adversarial Networks , 2018, PAKDD.

[17]  Gustavo Carneiro,et al.  A Bayesian Data Augmentation Approach for Learning Deep Models , 2017, NIPS.

[18]  Junfeng Yang,et al.  DeepXplore: Automated Whitebox Testing of Deep Learning Systems , 2017, SOSP.

[19]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Taesung Park,et al.  Semantic Image Synthesis With Spatially-Adaptive Normalization , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[22]  Peter Corcoran,et al.  Smart Augmentation Learning an Optimal Data Augmentation Strategy , 2017, IEEE Access.

[23]  Patrice Y. Simard,et al.  Best practices for convolutional neural networks applied to visual document analysis , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..

[24]  Nima Tajbakhsh,et al.  Embracing Imperfect Datasets: A Review of Deep Learning Solutions for Medical Image Segmentation , 2019, Medical Image Anal..

[25]  Taesung Park,et al.  CyCADA: Cycle-Consistent Adversarial Domain Adaptation , 2017, ICML.

[26]  Christian Ledig,et al.  Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Cewu Lu,et al.  Explicit Shape Encoding for Real-Time Instance Segmentation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[28]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[29]  Bin Yang,et al.  MedGAN: Medical Image Translation using GANs , 2018, Comput. Medical Imaging Graph..

[30]  George Vogiatzis,et al.  QuiltGAN: An Adversarially Trained, Procedural Algorithm for Texture Generation , 2019, ICVS.

[31]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[33]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Ross B. Girshick,et al.  Mask R-CNN , 2017, 1703.06870.

[35]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Taesup Kim,et al.  Fast AutoAugment , 2019, NeurIPS.

[37]  Yann LeCun,et al.  Regularization of Neural Networks using DropConnect , 2013, ICML.

[38]  Abhinav Gupta,et al.  Generative Image Modeling Using Style and Structure Adversarial Networks , 2016, ECCV.

[39]  Jung-Woo Ha,et al.  StarGAN: Unified Generative Adversarial Networks for Multi-domain Image-to-Image Translation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[40]  Yi Li,et al.  Fully Convolutional Instance-Aware Semantic Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[41]  Yunchao Wei,et al.  CCNet: Criss-Cross Attention for Semantic Segmentation. , 2020, IEEE transactions on pattern analysis and machine intelligence.

[42]  Alok Aggarwal,et al.  Regularized Evolution for Image Classifier Architecture Search , 2018, AAAI.

[43]  Wei Liu,et al.  SSD: Single Shot MultiBox Detector , 2015, ECCV.

[44]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[45]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[46]  Cewu Lu,et al.  InstaBoost: Boosting Instance Segmentation via Probability Map Guided Copy-Pasting , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[47]  Jaakko Lehtinen,et al.  Progressive Growing of GANs for Improved Quality, Stability, and Variation , 2017, ICLR.

[48]  Quoc V. Le,et al.  Randaugment: Practical automated data augmentation with a reduced search space , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[49]  Enhua Wu,et al.  Squeeze-and-Excitation Networks , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  拓海 杉山,et al.  “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”の学習報告 , 2017 .

[51]  Sepp Hochreiter,et al.  GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium , 2017, NIPS.

[52]  Junmo Kim,et al.  Deep Pyramidal Residual Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[53]  George Vogiatzis,et al.  rcGAN: Learning a Generative Model for Arbitrary Size Image Generation , 2020, ISVC.

[54]  George Vogiatzis,et al.  CSC-GAN: Cycle and Semantic Consistency for Dataset Augmentation , 2020, ISVC.

[55]  Wei Wu,et al.  Online Hyper-Parameter Learning for Auto-Augmentation Strategy , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[56]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[58]  Snehashis Roy,et al.  Image synthesis and superresolution in medical imaging , 2020 .

[59]  Jeff Donahue,et al.  Large Scale Adversarial Representation Learning , 2019, NeurIPS.

[60]  Vijay Vasudevan,et al.  Learning Transferable Architectures for Scalable Image Recognition , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[61]  Paul Babyn,et al.  Generative Adversarial Network in Medical Imaging: A Review , 2018, Medical Image Anal..

[62]  Lanfen Lin,et al.  A deep 3D residual CNN for false-positive reduction in pulmonary nodule detection. , 2018, Medical physics.

[63]  Radim Sára,et al.  Spatial Pattern Templates for Recognition of Objects with Regular Structure , 2013, GCPR.

[64]  Jürgen Schmidhuber,et al.  Multi-column deep neural networks for image classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[65]  Alexandr A. Kalinin,et al.  Albumentations: fast and flexible image augmentations , 2018, Inf..

[66]  Toby P. Breckon,et al.  Style Augmentation: Data Augmentation via Style Randomization , 2018, CVPR Workshops.

[67]  Kaiming He,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).