Chapter 2 Phase synchronization: From periodic to chaotic and noisy

Publisher Summary The classical theory of synchronization distinguishes between forced synchronization by an external periodic driving force, and mutual synchronization between coupled oscillators. In both cases, manifestations of synchronization are the same. Synchronization of periodic self-sustained oscillators in the presence of noise shows that noise acts against synchronization in a sense that under the noise influence synchronization occurs only for a limited period. Synchronization includes a wide range of problems from different fields of nonlinear dynamics and statistical physics. The chapter concentrates on the synchronization of stochastic system, which exhibits the phenomenon of stochastic resonance and, therefore, possesses noise-controlled time scales. The chapter presents an illustrative example of how synchronization looks like in a periodically driven overdamped stochastic system. The classical case of synchronization of self-sustained oscillator is discussed and details of forced, mutual, and synchronization under noisy perturbation are presented in the chapter. The chapter provides several examples of synchronization in chaos and excitable media. Synchronization of stochastic systems by external signals and synchronization of stochastic resonance systems are discussed in the chapter.

[1]  Catherine Nicolis,et al.  Stochastic aspects of climatic transitions—response to a periodic forcing , 1982 .

[2]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[3]  Neiman Synchronizationlike phenomena in coupled stochastic bistable systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[5]  Wulfram Gerstner,et al.  Spontaneous Excitations in the Visual Cortex: Stripes, Spirals, Rings, and Collective Bursts , 1995, Neural Computation.

[6]  J. Buck Synchronous Rhythmic Flashing of Fireflies. II. , 1938, The Quarterly Review of Biology.

[7]  S H Strogatz,et al.  Coupled oscillators and biological synchronization. , 1993, Scientific American.

[8]  F. Moss,et al.  Noise sustained waves in subexcitable media: From chemical waves to brain waves. , 1998, Chaos.

[9]  Werner Horsthemke,et al.  Noise-induced transitions , 1984 .

[10]  L. Wilkens,et al.  Synchronization of the Noisy Electrosensitive Cells in the Paddlefish , 1999 .

[11]  P. F. Panter Modulation, noise, and spectral analysis , 1965 .

[12]  Grigory V. Osipov,et al.  Stability, Structures and Chaos in Nonlinear Synchronization Networks , 1995 .

[13]  Wiesenfeld,et al.  Theory of stochastic resonance. , 1989, Physical review. A, General physics.

[14]  L. Tsimring,et al.  Generalized synchronization of chaos in directionally coupled chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  J. Bendat,et al.  Random Data: Analysis and Measurement Procedures , 1971 .

[16]  Alexander B. Neiman,et al.  Noise-Enhanced Phase Synchronization in Excitable Media , 1999 .

[17]  P. Jung,et al.  Thermal Waves, Criticality, and Self-Organization in Excitable Media , 1997 .

[18]  Lutz Schimansky-Geier,et al.  STOCHASTIC RESONANCE : NOISE-ENHANCED PHASE COHERENCE , 1998 .

[19]  Frank Moss,et al.  STOCHASTIC RESONANCE: TUTORIAL AND UPDATE , 1994 .

[20]  Netta Cohen,et al.  Emergence of Spontaneous Rhythm Disorders in Self-Assembled Networks of Heart Cells , 1999 .

[21]  M. Rosenblum,et al.  Chapter 9 Phase synchronization: From theory to data analysis , 2001 .

[22]  Lutz Schimansky-Geier,et al.  Noise-Sustained Pulsating Patterns and Global Oscillations in Subexcitable Media , 1999 .

[23]  K. Schulten,et al.  Noise-induced synchronous neuronal oscillations. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  Jürgen Kurths,et al.  Alternating Locking Ratios in Imperfect Phase Synchronization , 1999 .

[25]  Ljupco Kocarev,et al.  General approach for chaotic synchronization with applications to communication. , 1995, Physical review letters.

[26]  Lutz Schimansky-Geier,et al.  Noise-induced spiral dynamics in excitable media , 1999 .

[27]  Mark Hess,et al.  TRANSITION TO PHASE SYNCHRONIZATION OF CHAOS , 1998 .

[28]  W. Ditto,et al.  Taming spatiotemporal chaos with disorder , 1995, Nature.

[29]  Alexander B. Neiman,et al.  Analytic description of noise-induced phase synchronization , 2000 .

[30]  Wiesenfeld,et al.  Synchronization transitions in a disordered Josephson series array. , 1996, Physical review letters.

[31]  D. Middleton An Introduction to Statistical Communication Theory , 1960 .

[32]  Dmitry E. Postnov,et al.  SYNCHRONIZATION OF CHAOS , 1992 .

[33]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[34]  Karma,et al.  Noise-Induced Coherence in Neural Networks. , 1996, Physical review letters.

[35]  Doering,et al.  Thermally activated escape over fluctuating barriers. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[37]  E. Hunt,et al.  Noise Sustained Propagation of a Signal in Coupled Bistable Electronic Elements , 1998 .

[38]  G. Parisi,et al.  Stochastic resonance in climatic change , 1982 .

[39]  Kurt Wiesenfeld,et al.  Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs , 1995, Nature.

[40]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems , 1983 .

[41]  Alexander B. Neiman,et al.  Stochastic resonance in two coupled bistable systems , 1995 .

[42]  Alexander B. Neiman,et al.  Noise Induced Order: Stochastic Resonance , 1998 .

[43]  J. Kurths,et al.  Coherence Resonance in a Noise-Driven Excitable System , 1997 .

[44]  A. Winfree Biological rhythms and the behavior of populations of coupled oscillators. , 1967, Journal of theoretical biology.

[45]  H H Abel,et al.  Synchronization in the human cardiorespiratory system. , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[46]  C. Hayashi,et al.  Nonlinear oscillations in physical systems , 1987 .

[47]  M. Rabinovich,et al.  Stochastic synchronization of oscillation in dissipative systems , 1986 .

[48]  A. Selverston,et al.  Synchronous Behavior of Two Coupled Biological Neurons , 1998, chao-dyn/9811010.

[49]  L Schimansky-Geier,et al.  Synchronization of noisy systems by stochastic signals. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  Johnson,et al.  Spatiotemporal Stochastic Resonance in a System of Coupled Diode Resonators. , 1996, Physical review letters.

[51]  L. Schimansky-Geier,et al.  Stochastic resonance in bistable systems driven by harmonic noise. , 1994, Physical review letters.

[52]  George H. Weiss Contemporary Problems in Statistical Physics , 1987 .

[53]  L. Chua,et al.  Methods of Qualitative Theory in Nonlinear Dynamics (Part II) , 2001 .

[54]  L Schimansky-Geier,et al.  Analytical approach to the stochastic FitzHugh-Nagumo system and coherence resonance. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[55]  Kurt Wiesenfeld,et al.  Disorder-enhanced synchronization , 1995 .

[56]  Jürgen Kurths,et al.  Detection of n:m Phase Locking from Noisy Data: Application to Magnetoencephalography , 1998 .

[57]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[58]  Dmitry E. Postnov,et al.  INTERACTING COHERENCE RESONANCE OSCILLATORS , 1999 .

[59]  A. Winfree The geometry of biological time , 1991 .

[60]  Polina S. Landa,et al.  Synchronizing the chaotic oscillations by external force , 1991 .

[61]  Jung,et al.  Spatiotemporal stochastic resonance in excitable media. , 1995, Physical review letters.

[62]  Schimansky-Geier,et al.  Coherence and stochastic resonance in a two-state system , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[63]  André Longtin,et al.  Stochastic and Deterministic Resonances for Excitable Systems , 1998 .

[64]  N. Stocks,et al.  Comment on "Stochastic resonance in bistable systems" , 1990, Physical review letters.

[65]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[66]  Adi R. Bulsara,et al.  Tuning in to Noise , 1996 .

[67]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[68]  Anishchenko,et al.  Dynamical Entropies Applied to Stochastic Resonance , 1996, Physical review letters.

[69]  A. Sutera,et al.  The mechanism of stochastic resonance , 1981 .

[70]  Grigory V. Osipov,et al.  PHASE SYNCHRONIZATION EFFECTS IN A LATTICE OF NONIDENTICAL ROSSLER OSCILLATORS , 1997 .

[71]  Anishchenko,et al.  Mean Switching Frequency Locking in Stochastic Bistable Systems Driven by a Periodic Force. , 1995, Physical review letters.

[72]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[73]  Lutz Schimansky-Geier,et al.  Linear response theory applied to stochastic resonance in models of ensembles of oscillators , 1997 .

[74]  Allen I. Selverston,et al.  Synchronisation in neural networks , 1996 .

[75]  V. G. Yakhno,et al.  Autowave Processes in Kinetic Systems , 1987 .

[76]  H. Wio,et al.  STOCHASTIC RESONANT MEDIA : SIGNAL-TO-NOISE RATIO FOR THE ACTIVATOR-INHIBITOR SYSTEM THROUGH A QUASIVARIATIONAL APPROACH , 1998 .

[77]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[78]  S. Fauve,et al.  Stochastic resonance in a bistable system , 1983 .

[79]  R. L. Stratonovich,et al.  Topics in the theory of random noise , 1967 .

[80]  W. Ditto,et al.  Noise Enhanced Propagation , 1998 .

[81]  Peter Jung,et al.  Periodically driven stochastic systems , 1993 .

[82]  J. Kurths,et al.  Attractor-Repeller Collision and Eyelet Intermittency at the Transition to Phase Synchronization , 1997 .

[83]  André Longtin,et al.  Synchronization of the stochastic Fitzhugh-Nagumo equations to periodic forcing , 1995 .

[84]  Carson C. Chow,et al.  Aperiodic stochastic resonance in excitable systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[85]  J. Kurths,et al.  Heartbeat synchronized with ventilation , 1998, Nature.

[86]  Ilʹi︠a︡ Izrailevich Blekhman,et al.  Synchronization in science and technology , 1988 .