Computer vision for wildfire research: An evolving image dataset for processing and analysis

The last decade has witnessed the use of computer vision for wildfire detection and measurement. The first and most important step for computer vision analysis is the fire pixel detection because it determines the accuracy of the following processing. The evaluation and the comparison of the wildfire detection algorithms of the literature and the development of new ones needs open datasets with a large number of annotated images and their ground truth. We address this issue by presenting a publicly evolving wildfire annotated image database with ground truth data with examples of use. Currently, it contains 500 visible images and, in a more limited number, multimodal images and videos with frame by frame annotations. This is currently the largest dataset released in this research field.

[1]  Eulàlia Planas,et al.  Computing forest fires aerial suppression effectiveness by IR monitoring , 2011 .

[2]  J. Gould,et al.  Aerial suppression of bushfires: cost-benefit study for Victoria. , 1986 .

[3]  Agma J. M. Traina,et al.  Techniques for Effective and Efficient Fire Detection from Social Media Images , 2015, ICEIS.

[4]  Maja Štula,et al.  Forest Fire Protection by Advanced Video Detection System - Croatian Experiences , 2006 .

[5]  Luis Merino,et al.  FIRE DETECTION USING AUTONOMOUS AERIAL VEHICLES WITH INFRARED AND VISUAL CAMERAS. , 2005 .

[6]  Moulay A. Akhloufi,et al.  Benchmarking of wildland fire colour segmentation algorithms , 2015, IET Image Process..

[7]  Hélène Laurent,et al.  Fire scene segmentations for forest fire characterization: A comparative study , 2011, 2011 18th IEEE International Conference on Image Processing.

[8]  Tom Toulouse,et al.  Estimation par stéréovision multimodale de caractéristiques géométriques d'un feu de végétation en propagation. (Geometrical characteristics measurement of spreading vegetation fires with multimodal stereovision) , 2015 .

[9]  Moulay A. Akhloufi,et al.  Dynamic Fire 3D Modeling Using a Real-Time Stereovision System , 2008, EIAT/IETA.

[10]  Josef Kittler,et al.  Minimum error thresholding , 1986, Pattern Recognit..

[11]  Steven Verstockt,et al.  State of the art in vision-based fire and smoke dectection , 2009 .

[12]  C. J. van Rijsbergen,et al.  Information Retrieval , 1979, Encyclopedia of GIS.

[13]  Mark J. Huiskes,et al.  DynTex: A comprehensive database of dynamic textures , 2010, Pattern Recognit. Lett..

[14]  Hakil Kim,et al.  Adaptive flame detection using randomness testing and robust features , 2013 .

[15]  T. W. Ridler,et al.  Picture thresholding using an iterative selection method. , 1978 .

[16]  Hélène Laurent,et al.  Investigation of a novel image segmentation method dedicated to forest fire applications , 2013 .

[17]  Moulay A. Akhloufi,et al.  Automatic fire pixel detection using image processing: a comparative analysis of rule-based and machine learning-based methods , 2016, Signal Image Video Process..

[18]  Wen-Bing Horng,et al.  A new image-based real-time flame detection method using color analysis , 2005, Proceedings. 2005 IEEE Networking, Sensing and Control, 2005..

[19]  Markus Loepfe,et al.  An image processing technique for fire detection in video images , 2006 .

[20]  Aníbal Ollero,et al.  Automatic Forest-Fire Measuring Using Ground Stations and Unmanned Aerial Systems , 2011, Sensors.

[21]  Turgay Çelik,et al.  Fire detection using statistical color model in video sequences , 2007, J. Vis. Commun. Image Represent..

[22]  Mubarak Shah,et al.  Flame recognition in video , 2002, Pattern Recognit. Lett..

[23]  Chao-Ho Chen,et al.  An early fire-detection method based on image processing , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[24]  Ebroul Izquierdo,et al.  Efficient visual fire detection applied for video retrieval , 2008, 2008 16th European Signal Processing Conference.

[25]  Hasan Demirel,et al.  Fire detection in video sequences using a generic color model , 2009 .

[26]  Turgay Celik,et al.  Fast and Efficient Method for Fire Detection Using Image Processing , 2010 .

[27]  Lucile Rossi,et al.  Front fire propagation model: use of mathematical model and vision technology , 2006 .

[28]  Steven Verstockt,et al.  Video fire detection - Review , 2013, Digit. Signal Process..

[29]  ByoungChul Ko,et al.  Fire detection based on vision sensor and support vector machines , 2009 .

[30]  A. Enis Çetin,et al.  Computer vision based method for real-time fire and flame detection , 2006, Pattern Recognit. Lett..

[31]  Moulay A. Akhloufi,et al.  Estimation of spreading fire geometrical characteristics using near infrared stereovision , 2013, Electronic Imaging.

[32]  Jian Wang,et al.  Multi-feature fusion based fast video flame detection , 2010 .

[33]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[34]  Narendra Ahuja,et al.  Vision based fire detection , 2004, ICPR 2004.