Retinal connectomics: Towards complete, accurate networks

Connectomics is a strategy for mapping complex neural networks based on high-speed automated electron optical imaging, computational assembly of neural data volumes, web-based navigational tools to explore 10(12)-10(15) byte (terabyte to petabyte) image volumes, and annotation and markup tools to convert images into rich networks with cellular metadata. These collections of network data and associated metadata, analyzed using tools from graph theory and classification theory, can be merged with classical systems theory, giving a more completely parameterized view of how biologic information processing systems are implemented in retina and brain. Networks have two separable features: topology and connection attributes. The first findings from connectomics strongly validate the idea that the topologies of complete retinal networks are far more complex than the simple schematics that emerged from classical anatomy. In particular, connectomics has permitted an aggressive refactoring of the retinal inner plexiform layer, demonstrating that network function cannot be simply inferred from stratification; exposing the complex geometric rules for inserting different cells into a shared network; revealing unexpected bidirectional signaling pathways between mammalian rod and cone systems; documenting selective feedforward systems, novel candidate signaling architectures, new coupling motifs, and the highly complex architecture of the mammalian AII amacrine cell. This is but the beginning, as the underlying principles of connectomics are readily transferrable to non-neural cell complexes and provide new contexts for assessing intercellular communication.

[1]  Ben A. Barres,et al.  Transgenic Mice Reveal Unexpected Diversity of On-Off Direction-Selective Retinal Ganglion Cell Subtypes and Brain Structures Involved in Motion Processing , 2011, The Journal of Neuroscience.

[2]  Frank Harary,et al.  Graphical enumeration , 1973 .

[3]  R. Marc,et al.  Patterns of glutamate immunoreactivity in the goldfish retina , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  O. Sporns,et al.  Rich-Club Organization of the Human Connectome , 2011, The Journal of Neuroscience.

[5]  R. Masland,et al.  The shapes and numbers of amacrine cells: Matching of photofilled with Golgi‐stained cells in the rabbit retina and comparison with other mammalian species , 1999, The Journal of comparative neurology.

[6]  J. S. Lauritzen,et al.  ON cone bipolar cell axonal synapses in the OFF inner plexiform layer of the rabbit retina , 2013, The Journal of comparative neurology.

[7]  D. Protti,et al.  Cannabinoids modulate spontaneous synaptic activity in retinal ganglion cells , 2011, Visual Neuroscience.

[8]  P. Trezona The tetrahcromatic colour match as a colorimetric technique. , 1973, Vision research.

[9]  R. Tsien,et al.  Fluorescent labeling of tetracysteine-tagged proteins in intact cells , 2010, Nature Protocols.

[10]  J. Nabekura,et al.  Resting Microglia Directly Monitor the Functional State of Synapses In Vivo and Determine the Fate of Ischemic Terminals , 2009, The Journal of Neuroscience.

[11]  D. I. Vaney Retinal amacrine cells , 2004 .

[12]  Timothy O. Laumann,et al.  Informatics and Data Mining Tools and Strategies for the Human Connectome Project , 2011, Front. Neuroinform..

[13]  V. M. Korkhov,et al.  Direct observation of molecular arrays in the organized smooth endoplasmic reticulum , 2009, BMC Cell Biology.

[14]  Shawn Mikula,et al.  Internet-enabled high-resolution brain mapping and virtual microscopy , 2007, NeuroImage.

[15]  D. Mastronarde,et al.  A Computational Framework for Ultrastructural Mapping of Neural Circuitry , 2009, PLoS biology.

[16]  N. Newman The Visual Neurosciences , 2005 .

[17]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[18]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[19]  David G. Stork,et al.  Pattern Classification , 1973 .

[20]  James R. Anderson,et al.  Retinal remodeling in the Tg P347L rabbit, a large‐eye model of retinal degeneration , 2011, The Journal of comparative neurology.

[21]  David J. Calkins,et al.  Absence of spectrally specific lateral inputs to midget ganglion cells in primate retina , 1996, Nature.

[22]  Andrew D Huberman,et al.  Transsynaptic Tracing with Vesicular Stomatitis Virus Reveals Novel Retinal Circuitry , 2013, The Journal of Neuroscience.

[23]  Peter Sterling,et al.  A systematic approach to reconstructing microcircuitry by electron microscopy of serial sections , 1980, Brain Research Reviews.

[24]  Timothy S. Coalson,et al.  Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. , 2012, Cerebral cortex.

[25]  V. Arshavsky,et al.  Progress in Retinal and Eye Research , 2008 .

[26]  J. S. Lauritzen,et al.  Diffusely-stratified OFF Cone Bipolar Cell Inputs to Amacrine Cells in the ON Inner Plexiform Layer , 2012 .

[27]  Frank S Werblin,et al.  Six different roles for crossover inhibition in the retina: Correcting the nonlinearities of synaptic transmission , 2010, Visual Neuroscience.

[28]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[29]  T. Voigt,et al.  Dopaminergic innervation of A II amacrine cells in mammalian retina , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  Stephen J. Smith,et al.  Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits , 2007, Neuron.

[31]  Ericka B. Ramko,et al.  A Genetically Encoded Tag for Correlated Light and Electron Microscopy of Intact Cells, Tissues, and Organisms , 2011, PLoS biology.

[32]  D. Stefurak,et al.  The time-course of rod-cone interaction , 1984, Vision Research.

[33]  Zhiyin Liang,et al.  The ON Pathway Rectifies the OFF Pathway of the Mammalian Retina , 2010, The Journal of Neuroscience.

[34]  Steffen Prohaska,et al.  Large-Scale Automated Histology in the Pursuit of Connectomes , 2011, The Journal of Neuroscience.

[35]  S. Bloomfield,et al.  Gap Junctional Coupling Underlies the Short-Latency Spike Synchrony of Retinal α Ganglion Cells , 2003, The Journal of Neuroscience.

[36]  B. Stabell,et al.  Effects of rod activity on color perception with light adaptation. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[37]  J. Bourne,et al.  Nanoscale analysis of structural synaptic plasticity , 2012, Current Opinion in Neurobiology.

[38]  Tolga Tasdizen,et al.  Automatic mosaicking and volume assembly for high-throughput serial-section transmission electron microscopy , 2010, Journal of Neuroscience Methods.

[39]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[40]  Frank S Werblin,et al.  The retinal hypercircuit: a repeating synaptic interactive motif underlying visual function , 2011, The Journal of physiology.

[41]  Tiered cross-class bipolar cell gap junctional coupling in the rabbit retina , 2013 .

[42]  Frank S Werblin,et al.  Amacrine-to-amacrine cell inhibition in the rabbit retina. , 2008, Journal of neurophysiology.

[43]  Jeff W Lichtman,et al.  Why not connectomics? , 2013, Nature Methods.

[44]  J C Fiala,et al.  Reconstruct: a free editor for serial section microscopy , 2005, Journal of microscopy.

[45]  S. Massey,et al.  ON Inputs to the OFF Layer: Bipolar Cells That Break the Stratification Rules of the Retina , 2009, The Journal of Neuroscience.

[46]  S. Bloomfield,et al.  Tracer coupling pattern of amacrine and ganglion cells in the rabbit retina , 1997, The Journal of comparative neurology.

[47]  S. Buck,et al.  Foveal and extra-foveal influences on rod hue biases , 2006, Visual Neuroscience.

[48]  H. Kolb,et al.  Off‐alpha and OFF‐beta ganglion cells in cat retina: II. Neural circuitry as revealed by electron microscopy of HRP stains , 1993, The Journal of comparative neurology.

[49]  Zhiyin Liang,et al.  Cross inhibition from ON to OFF pathway improves the efficiency of contrast encoding in the mammalian retina. , 2012, Journal of neurophysiology.

[50]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[51]  Winfried Denk,et al.  Neurotechnology: Summa technologiae , 2012, Current Opinion in Neurobiology.

[52]  S. Massey,et al.  Electrical synapses in retinal ON cone bipolar cells: subtype-specific expression of connexins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  G. Knott,et al.  Serial Section Scanning Electron Microscopy of Adult Brain Tissue Using Focused Ion Beam Milling , 2008, The Journal of Neuroscience.

[54]  J. S. Lauritzen,et al.  Building retinal connectomes , 2012, Current Opinion in Neurobiology.

[55]  M. Bennett,et al.  Glutamate induces directed chemotaxis of microglia , 2009, The European journal of neuroscience.

[56]  F S Werblin,et al.  Synaptic organization of the vertebrate retina. , 1971, Vision research.

[57]  M. H. Brill Mesopic color matching: some theoretical issues. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[58]  S. Yazulla Endocannabinoids in the retina: From marijuana to neuroprotection , 2008, Progress in Retinal and Eye Research.

[59]  Benjamin E. Reese,et al.  Mosaics, Tiling, and Coverage by Retinal Neurons , 2008 .

[60]  Jeff W. Lichtman,et al.  Seeing Circuits Assemble , 2008, Neuron.

[61]  E. Marder,et al.  Similar network activity from disparate circuit parameters , 2004, Nature Neuroscience.

[62]  K. Micheva,et al.  The gain in brain: novel imaging techniques and multiplexed proteomic imaging of brain tissue ultrastructure , 2012, Current Opinion in Neurobiology.

[63]  R. Marc,et al.  Fundamental GABAergic amacrine cell circuitries in the retina: Nested feedback, concatenated inhibition, and axosomatic synapses , 2000, The Journal of comparative neurology.

[64]  Helga Kolb,et al.  A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina , 1975, Brain Research.

[65]  Mark H. Ellisman,et al.  Three-Dimensional Reconstruction of Serial Mouse Brain Sections: Solution for Flattening High-Resolution Large-Scale Mosaics , 2011, Front. Neuroanat..

[66]  R E Marc,et al.  Pattern recognition of amino acid signatures in retinal neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  Stephen A. Baccus,et al.  The Projective Field of a Retinal Amacrine Cell , 2011, The Journal of Neuroscience.

[68]  Richard M. Karp,et al.  Reducibility among combinatorial problems" in complexity of computer computations , 1972 .

[69]  E. V. Famiglietti,et al.  Functional architecture of cone bipolar cells in mammalian retina , 1981, Vision Research.

[70]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[71]  D. Copenhagen,et al.  Signal transmission through the dark-adapted retina of the toad (Bufo marinus). Gain, convergence, and signal/noise , 1990, The Journal of general physiology.

[72]  P. Trezona,et al.  Rod participation in the 'blue' mechanism and its effect on colour matching. , 1970, Vision research.

[73]  Joe G. Hollyfield,et al.  Retinal Degenerative Diseases , 2012, Advances in Experimental Medicine and Biology.

[74]  S. Wu,et al.  Signal transmission from cones to amacrine cells in dark- and light-adapted tiger salamander retina , 2004, Brain Research.

[75]  S. Yazulla,et al.  Goldfish bipolar cells and axon terminal patterns: A Golgi study , 1993, The Journal of comparative neurology.

[76]  David J. Calkins,et al.  Microcircuitry for Two Types of Achromatic Ganglion Cell in Primate Fovea , 2007, The Journal of Neuroscience.

[77]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[78]  T. Frumkes,et al.  Suppressive rod-cone interactions: evidence for separate retinal (temporal) and extraretinal (spatial) mechanisms in achromatic vision. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[79]  Steven L. Buck PII: S0042-6989(96)00276-3 , 1997 .

[80]  Kristina D. Micheva,et al.  Single-Synapse Analysis of a Diverse Synapse Population: Proteomic Imaging Methods and Markers , 2010, Neuron.

[81]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[82]  J. Lippincott-Schwartz,et al.  Formation of stacked ER cisternae by low affinity protein interactions , 2003, The Journal of cell biology.

[83]  J. S. Lauritzen,et al.  Pure feedforward amacrine cells , 2013 .

[84]  Richard H. Masland,et al.  The Diversity of Ganglion Cells in a Mammalian Retina , 2002, The Journal of Neuroscience.

[85]  Shijie Jin,et al.  Glutamate induces neurotrophic factor production from microglia via protein kinase C pathway , 2010, Brain Research.

[86]  D. Mastronarde,et al.  Exploring the retinal connectome , 2011, Molecular vision.

[87]  R. Marc,et al.  A molecular phenotype atlas of the zebrafish retina , 2001, Journal of neurocytology.

[88]  J. Dowling,et al.  Synaptic organization of the frog retina: an electron microscopic analysis comparing the retinas of frogs and primates , 1968, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[89]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[90]  E. Strettoi,et al.  Synaptic connections of the narrow‐field, bistratified rod amacrine cell (AII) in the rabbit retina , 1992, The Journal of comparative neurology.

[91]  Thomas J Deerinck,et al.  Multicolor and Electron Microscopic Imaging of Connexin Trafficking , 2002, Science.

[92]  B. Stabell,et al.  Chromatic rod-cone interaction during dark adaptation. , 1998, Journal of the Optical Society of America. A, Optics, image science, and vision.

[93]  R. Nygaard,et al.  Inhibitory influence of unstimulated rods in the human retina: evidence provided by examining cone flicker. , 1983, Science.

[94]  Kwoon Y. Wong,et al.  Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: Contacts with dopaminergic amacrine cells and melanopsin ganglion cells , 2009, The Journal of comparative neurology.

[95]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[96]  C. Niell,et al.  What can mice tell us about how vision works? , 2011, Trends in Neurosciences.

[97]  B. Jones,et al.  Retinal remodeling triggered by photoreceptor degenerations , 2003, The Journal of comparative neurology.

[98]  Helga Kolb,et al.  Rod and Cone Pathways in the Inner Plexiform Layer of Cat Retina , 1974, Science.

[99]  B. Sakmann,et al.  Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch , 2011, Proceedings of the National Academy of Sciences.

[100]  S. Massey,et al.  Circuit Functions of Gap Junctions in the Mammalian Retina , 2008 .

[101]  Gap junctions in the eye: evidence for heteromeric, heterotypic and mixed-homotypic interactions , 2000, Brain Research Reviews.

[102]  R. Marc,et al.  Amino Acid Signatures in the Primate Retina , 1996, The Journal of Neuroscience.

[103]  JR ANDERSON,et al.  The Viking viewer for connectomics: scalable multi-user annotation and summarization of large volume data sets , 2011, Journal of microscopy.

[104]  S. Wu,et al.  Input-output relations of the feedback synapse between horizontal cells and cones in the tiger salamander retina. , 1991, Journal of neurophysiology.

[105]  S. Schein,et al.  Macaque Retina Contains an S-Cone OFF Midget Pathway , 2003, The Journal of Neuroscience.

[106]  Ulla Ruotsalainen,et al.  Neuroinformatics: the integration of shared databases and tools towards integrative neuroscience. , 2002, Journal of integrative neuroscience.

[107]  David J. Calkins,et al.  Microcircuitry and Mosaic of a Blue–Yellow Ganglion Cell in the Primate Retina , 1998, The Journal of Neuroscience.

[108]  Edgar Sanchez-Sinencio,et al.  Sound design of low power nested transconductance-capacitance compensation amplifiers , 1999 .

[109]  T. Tasdizen,et al.  The Viking Viewer for Connectomics : Scalable Multiuser Annotation and Summarization of Large Volume Datasets Abbreviated Title : The Viking Viewer for Connectomics , 2010 .

[110]  Richard F. Brubaker,et al.  Adler's Physiology of the Eye , 1976 .

[111]  J. Dowling,et al.  Synaptic relationships in the plexiform layers of carp retina , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[112]  Kevin L. Briggman,et al.  Towards neural circuit reconstruction with volume electron microscopy techniques , 2006, Current Opinion in Neurobiology.

[113]  A. Huberman,et al.  Gap Junctions Are Essential for Generating the Correlated Spike Activity of Neighboring Retinal Ganglion Cells , 2013, PloS one.

[114]  S. Bloomfield,et al.  Gap junctional coupling underlies the short-latency spike synchrony of retinal alpha ganglion cells. , 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[115]  Robert E Marc,et al.  Molecular Phenotyping of Retinal Ganglion Cells , 2002, The Journal of Neuroscience.

[116]  N. Kamasawa,et al.  Abundance and ultrastructural diversity of neuronal gap junctions in the OFF and ON sublaminae of the inner plexiform layer of rat and mouse retina , 2006, Neuroscience.

[117]  J. Nathans,et al.  Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter , 2004, The Journal of comparative neurology.

[118]  Tim Gollisch,et al.  Rapid Neural Coding in the Retina with Relative Spike Latencies , 2008, Science.

[119]  Markus Hadwiger,et al.  Ssecrett and NeuroTrace: Interactive Visualization and Analysis Tools for Large-Scale Neuroscience Data Sets , 2010, IEEE Computer Graphics and Applications.

[120]  B. Boycott,et al.  Organization of the primate retina: electron microscopy , 1966, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[121]  J. Nabekura,et al.  Microglia: actively surveying and shaping neuronal circuit structure and function , 2013, Trends in Neurosciences.

[122]  W. Rymer,et al.  Decorrelating actions of Renshaw interneurons on the firing of spinal motoneurons within a motor nucleus: a simulation study. , 1998, Journal of neurophysiology.

[123]  W. Denk,et al.  Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure , 2004, PLoS biology.

[124]  T. Frumkes,et al.  The cellular basis for suppressive rod–cone interaction , 1988, Visual Neuroscience.