Multi-Volume High Resolution RGB-D Mapping with Dynamic Volume Placement

We present a novel RGB-D mapping system for generating 3D maps over spatially extended regions with higher resolution than current methods using multiple, dynamically placed mapping volumes. Our method takes in RGB-D frames and dynamically assigns multiple mapping volumes to the environment, exchanging mapping volumes between the CPU and GPU. Mapping volumes are added or removed as needed to allow for spatially extended, high resolution mapping. Our system is designed to maximize the resolution possible for such volumetric methods, while working on an unbounded space.

[1]  Frank Dellaert,et al.  Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing , 2006, Int. J. Robotics Res..

[2]  Frank Dellaert,et al.  iSAM2: Incremental smoothing and mapping with fluid relinearization and incremental variable reordering , 2011, 2011 IEEE International Conference on Robotics and Automation.

[3]  Dieter Fox,et al.  RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments , 2012, Int. J. Robotics Res..

[4]  Hugh F. Durrant-Whyte,et al.  Simultaneous map building and localization for an autonomous mobile robot , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.

[5]  Nico Blodow,et al.  Towards 3D Point cloud based object maps for household environments , 2008, Robotics Auton. Syst..

[6]  Matthias Nießner,et al.  Real-time 3D reconstruction at scale using voxel hashing , 2013, ACM Trans. Graph..

[7]  Berthold Bäuml,et al.  3D modeling, distance and gradient computation for motion planning: A direct GPGPU approach , 2013, 2013 IEEE International Conference on Robotics and Automation.

[8]  Henrik I. Christensen,et al.  Simultaneous localization and mapping with learned object recognition and semantic data association , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[9]  Paul H. J. Kelly,et al.  SLAM++: Simultaneous Localisation and Mapping at the Level of Objects , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[11]  John J. Leonard,et al.  Real-time large-scale dense RGB-D SLAM with volumetric fusion , 2014, Int. J. Robotics Res..

[12]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[13]  Nassir Navab,et al.  Model globally, match locally: Efficient and robust 3D object recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[14]  Wolfram Burgard,et al.  OctoMap : A Probabilistic , Flexible , and Compact 3 D Map Representation for Robotic Systems , 2010 .

[15]  John J. Leonard,et al.  RISE: An Incremental Trust-Region Method for Robust Online Sparse Least-Squares Estimation , 2014, IEEE Transactions on Robotics.

[16]  Marsette Vona,et al.  Moving Volume KinectFusion , 2012, BMVC.

[17]  Frank Dellaert,et al.  SLAM with object discovery, modeling and mapping , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Andrew J. Davison,et al.  A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[19]  Dieter Fox,et al.  Toward online 3-D object segmentation and mapping , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[20]  Richard Szeliski,et al.  High-accuracy stereo depth maps using structured light , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[21]  Dieter Fox,et al.  Detection-based object labeling in 3D scenes , 2012, 2012 IEEE International Conference on Robotics and Automation.

[22]  Hugh Durrant-Whyte,et al.  Simultaneous Localisation and Mapping ( SLAM ) : Part I The Essential Algorithms , 2006 .

[23]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[24]  Fei-Fei Li,et al.  Object discovery in 3D scenes via shape analysis , 2013, 2013 IEEE International Conference on Robotics and Automation.

[25]  Horst Bischof,et al.  GPSlam: Marrying Sparse Geometric and Dense Probabilistic Visual Mapping , 2011, BMVC.

[26]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .

[27]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[28]  Dieter Fox,et al.  DynamicFusion: Reconstruction and tracking of non-rigid scenes in real-time , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  John J. Leonard,et al.  Deformation-based loop closure for large scale dense RGB-D SLAM , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[30]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[31]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Jitendra Malik,et al.  Intrinsic Scene Properties from a Single RGB-D Image , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  John J. Leonard,et al.  An incremental trust-region method for Robust online sparse least-squares estimation , 2012, 2012 IEEE International Conference on Robotics and Automation.

[34]  Andrew I. Comport,et al.  On unifying key-frame and voxel-based dense visual SLAM at large scales , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[35]  Joni-Kristian Kämäräinen,et al.  Photorealistic 3D mapping of indoors by RGB-D scanning process , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  John J. Leonard,et al.  Toward lifelong object segmentation from change detection in dense RGB-D maps , 2013, 2013 European Conference on Mobile Robots.

[37]  Andrew I. Comport,et al.  Super-resolution 3D tracking and mapping , 2013, 2013 IEEE International Conference on Robotics and Automation.

[38]  Antonis A. Argyros,et al.  Efficient model-based 3D tracking of hand articulations using Kinect , 2011, BMVC.

[39]  Jake K. Aggarwal,et al.  Human detection using depth information by Kinect , 2011, CVPR 2011 WORKSHOPS.

[40]  Ming Zeng,et al.  A memory-efficient kinectfusion using octree , 2012, CVM'12.

[41]  Vladlen Koltun,et al.  Dense scene reconstruction with points of interest , 2013, ACM Trans. Graph..

[42]  Jörg Stückler,et al.  Multi-resolution surfel maps for efficient dense 3D modeling and tracking , 2014, J. Vis. Commun. Image Represent..

[43]  Dieter Fox,et al.  Patch Volumes: Segmentation-Based Consistent Mapping with RGB-D Cameras , 2013, 2013 International Conference on 3D Vision.

[44]  Wolfram Burgard,et al.  A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998, Auton. Robots.

[45]  Wolfram Burgard,et al.  An evaluation of the RGB-D SLAM system , 2012, 2012 IEEE International Conference on Robotics and Automation.

[46]  Patrick Rives,et al.  Accurate Quadrifocal Tracking for Robust 3D Visual Odometry , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[47]  Jiawen Chen,et al.  Scalable real-time volumetric surface reconstruction , 2013, ACM Trans. Graph..

[48]  Vladlen Koltun,et al.  Elastic Fragments for Dense Scene Reconstruction , 2013, 2013 IEEE International Conference on Computer Vision.

[49]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[50]  Daniel Cremers,et al.  Dense visual SLAM for RGB-D cameras , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[51]  Achim J. Lilienthal,et al.  SDF Tracker: A parallel algorithm for on-line pose estimation and scene reconstruction from depth images , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[52]  Andrew W. Fitzgibbon,et al.  KinectFusion: real-time dynamic 3D surface reconstruction and interaction , 2011, SIGGRAPH '11.

[53]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[54]  Andrew I. Comport,et al.  A Unified Rolling Shutter and Motion Model for Dense 3D Visual Tracking , 2013 .

[55]  Daniel Cremers,et al.  Large-Scale Multi-resolution Surface Reconstruction from RGB-D Sequences , 2013, 2013 IEEE International Conference on Computer Vision.

[56]  Andrew J. Davison,et al.  DTAM: Dense tracking and mapping in real-time , 2011, 2011 International Conference on Computer Vision.