Test of the correlation between body size and DNA content in Pimelia (Coleoptera: Tenebrionidae) from the Canary Islands

Comparative analyses of interspecific data in evolutionary biology usually require specific methods to remove the effects of phylogenetic inertia. When phylogenetic inertia is not considered, the Canarian Pimelia species show a positive, and almost significant (Prob. = 0.066) correlation between nuclear genome size and body size. However, after controlling for phylogenetic inertia there was a negative and significant correlation (Prob. = 0.007 to 0.017, depending on the DNA fraction considered). Such a change in the relationship after controlling for phylogenetic inertia is rarely reported. Moreover, the relationship usually reported is positive and thought be a consequence of species having a similar number of cells at the same stage of development. The aim of the present study is to report a case of a negative correlation, but not to explain the causal mechanism involved in genome size variations or propose a formal hypothesis on the specific links between DNA content and body size. However, a common explanation of the change in the relationship, i.e., positive to negative, is suggested. Moreover, the data available on the highly repetitive, non-coding satellite DNA allows us to analyse the specific pattern exhibited by this fraction.

[1]  C. Segarra,et al.  Genome Size and Chromosomal Evolution in Leaf Beetles (Coleoptera, Chrysomelidae) , 2004 .

[2]  J. Gómez‐Zurita,et al.  Cytogenetic Analysis of European Cassida (Coleoptera, Chrysomelidae) , 2004 .

[3]  O. Griffith,et al.  Genome size and longevity in fish , 2003, Experimental Gerontology.

[4]  J. Pons,et al.  Evolutionary dynamics of satellite DNA family PIM357 in species of the genus Pimelia (Tenebrionidae, Coleoptera). , 2002, Molecular biology and evolution.

[5]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[6]  D. Hartl Molecular melodies in high and low C , 2000, Nature Reviews Genetics.

[7]  I. McLAREN,et al.  Copepod development rates in relation to genome size and 18S rDNA copy number. , 2000, Genome.

[8]  N. Metcalfe,et al.  Genome size and longevity. , 2000, Trends in genetics : TIG.

[9]  Hewitt,et al.  Colonization and diversification: towards a phylogeographic synthesis for the Canary Islands. , 2000, Trends in ecology & evolution.

[10]  P. Hebert,et al.  Evolutionary implications of the relationship between genome size and body size in flatworms and copepods , 2000, Heredity.

[11]  J. Diniz‐Filho,et al.  AN EIGENVECTOR METHOD FOR ESTIMATING PHYLOGENETIC INERTIA , 1998, Evolution; international journal of organic evolution.

[12]  A. Vinogradov Buffering: a possible passive-homeostasis role for redundant DNA. , 1998, Journal of theoretical biology.

[13]  E. Jockusch An evolutionary correlate of genome size change in plethodontid salamanders , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[14]  A. Vinogradov NUCLEOTYPIC EFFECT IN HOMEOTHERMS: BODY‐MASS INDEPENDENT RESTING METABOLIC RATE OF PASSERINE BIRDS IS RELATED TO GENOME SIZE , 1997, Evolution; international journal of organic evolution.

[15]  M. Palmer,et al.  Relationship of Genome Size to Body Size in Phylan semicostatus (Coleoptera: Tenebrionidae) , 1996 .

[16]  A. Vinogradov NUCLEOTYPIC EFFECT IN HOMEOTHERMS: BODY‐MASS‐CORRECTED BASAL METABOLIC RATE OF MAMMALS IS RELATED TO GENOME SIZE , 1995, Evolution; international journal of organic evolution.

[17]  J. Elder,et al.  Concerted Evolution of Repetitive DNA Sequences in Eukaryotes , 1995, The Quarterly Review of Biology.

[18]  P. Oromí,et al.  Mitochondrial DNA phylogeny and sequential colonization of Canary Islands by darkling beetles of the genus Pimelia (Tenebrionidae) , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[19]  Andrew Rambaut,et al.  Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data , 1995, Comput. Appl. Biosci..

[20]  P. Hebert,et al.  Genome size variation in aphids , 1995 .

[21]  M. Plohl,et al.  Characterization of two abundant satellite DNAs from the mealworm Tenebrio obscurus , 1994, Journal of Molecular Evolution.

[22]  M. Ravosa Body size in mammalian paleobiology: Estimation and biological implications , 1993, International Journal of Primatology.

[23]  F. Rohlf,et al.  A revolution morphometrics. , 1993, Trends in ecology & evolution.

[24]  C. Juan,et al.  Genome size in Tribolium flour-beetles: inter- and intraspecific variation , 1991 .

[25]  Mark Kot,et al.  Adaptation: Statistics and a Null Model for Estimating Phylogenetic Effects , 1990 .

[26]  C. Juan,et al.  C-banding and DNA content in seven species of Tenebrionidae (Coleoptera) , 1989 .

[27]  K. S. Rai,et al.  PHENOTYPIC CORRELATES OF GENOME SIZE VARIATION IN AEDES ALBOPICTUS , 1989, Evolution; international journal of organic evolution.

[28]  I. McLAREN,et al.  Evolutionary and ecological significance of genome sizes in the copepod genus Pseudocalanus , 1989 .

[29]  I. McLAREN,et al.  Body sizes, development rates, and genome sizes among Calanus species , 1988, Hydrobiologia.

[30]  A. Larson,et al.  DEVELOPMENTAL CORRELATES OF GENOME SIZE IN PLETHODONTID SALAMANDERS AND THEIR IMPLICATIONS FOR GENOME EVOLUTION , 1987, Evolution; international journal of organic evolution.

[31]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[32]  L. Heaney ISLAND AREA AND BODY SIZE OF INSULAR MAMMALS: EVIDENCE FROM THE TRI‐COLORED SQUIRREL (CALLOSCIURUS PREVOSTI) OF SOUTHEAST ASIA , 1978, Evolution; international journal of organic evolution.

[33]  R. Hinegardner,et al.  Cellular DNA content of the Mollusca. , 1974, Comparative biochemistry and physiology. A, Comparative physiology.

[34]  M. Bennett,et al.  Nuclear DNA content and minimum generation time in herbaceous plants , 1972, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[35]  M. Bennett,et al.  The duration of meiosis , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[36]  M. Bennett,et al.  The duration of meiosis in pollen mother cells of wheat, rye and Triticale , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[37]  J. McLeish,et al.  Measurements of deoxyribosenucleic acid (DNA) in higher plants by Feulgen photometry and chemical methods , 1961 .

[38]  Joan Pons Evolución del DNA satélite en el género Pimelia , 1999 .

[39]  C.J.F. ter Braak,et al.  CANOCO Reference Manual and User's Guide to Canoco for Windows: Software for Canonical Community Ordination (Version 4) , 1998 .

[40]  C. Juan,et al.  Genome size, chromosomes, and egg-chorion ultrastructure in the evolution of Chrysomelinae , 1994 .

[41]  C. Juan,et al.  New Chromosomal Findings on The Spanish Tenebrionidae (Coleoptera) , 1989 .

[42]  G. Dover The eukaryotic genome in development and evolution: B. John and G. Miklos, Allen & Unwin, 1988. £14.95 (pbk) (xviii + 416 pages) ISBN 0 04 575033 5 , 1989 .

[43]  E. Rasch DNA "standards" and the range of accurate DNA estimates by Feulgen absorption microspectrophotometry. , 1985, Progress in clinical and biological research.

[44]  T. Cavalier-smith The Evolution of genome size , 1985 .

[45]  E. Olmo Nucleotype and cell size in vertebrates: a review. , 1983, Basic and applied histochemistry.

[46]  A. Sparrow,et al.  THE USE OF NUCLEAR AND CHROMOSOMAL VARIABLES IN DETERMINING AND PREDICTING RADIOSENSITIVITES , 1964 .