Test of the correlation between body size and DNA content in Pimelia (Coleoptera: Tenebrionidae) from the Canary Islands
暂无分享,去创建一个
[1] C. Segarra,et al. Genome Size and Chromosomal Evolution in Leaf Beetles (Coleoptera, Chrysomelidae) , 2004 .
[2] J. Gómez‐Zurita,et al. Cytogenetic Analysis of European Cassida (Coleoptera, Chrysomelidae) , 2004 .
[3] O. Griffith,et al. Genome size and longevity in fish , 2003, Experimental Gerontology.
[4] J. Pons,et al. Evolutionary dynamics of satellite DNA family PIM357 in species of the genus Pimelia (Tenebrionidae, Coleoptera). , 2002, Molecular biology and evolution.
[5] J. Sambrook,et al. Molecular Cloning: A Laboratory Manual , 2001 .
[6] D. Hartl. Molecular melodies in high and low C , 2000, Nature Reviews Genetics.
[7] I. McLAREN,et al. Copepod development rates in relation to genome size and 18S rDNA copy number. , 2000, Genome.
[8] N. Metcalfe,et al. Genome size and longevity. , 2000, Trends in genetics : TIG.
[9] Hewitt,et al. Colonization and diversification: towards a phylogeographic synthesis for the Canary Islands. , 2000, Trends in ecology & evolution.
[10] P. Hebert,et al. Evolutionary implications of the relationship between genome size and body size in flatworms and copepods , 2000, Heredity.
[11] J. Diniz‐Filho,et al. AN EIGENVECTOR METHOD FOR ESTIMATING PHYLOGENETIC INERTIA , 1998, Evolution; international journal of organic evolution.
[12] A. Vinogradov. Buffering: a possible passive-homeostasis role for redundant DNA. , 1998, Journal of theoretical biology.
[13] E. Jockusch. An evolutionary correlate of genome size change in plethodontid salamanders , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[14] A. Vinogradov. NUCLEOTYPIC EFFECT IN HOMEOTHERMS: BODY‐MASS INDEPENDENT RESTING METABOLIC RATE OF PASSERINE BIRDS IS RELATED TO GENOME SIZE , 1997, Evolution; international journal of organic evolution.
[15] M. Palmer,et al. Relationship of Genome Size to Body Size in Phylan semicostatus (Coleoptera: Tenebrionidae) , 1996 .
[16] A. Vinogradov. NUCLEOTYPIC EFFECT IN HOMEOTHERMS: BODY‐MASS‐CORRECTED BASAL METABOLIC RATE OF MAMMALS IS RELATED TO GENOME SIZE , 1995, Evolution; international journal of organic evolution.
[17] J. Elder,et al. Concerted Evolution of Repetitive DNA Sequences in Eukaryotes , 1995, The Quarterly Review of Biology.
[18] P. Oromí,et al. Mitochondrial DNA phylogeny and sequential colonization of Canary Islands by darkling beetles of the genus Pimelia (Tenebrionidae) , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[19] Andrew Rambaut,et al. Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data , 1995, Comput. Appl. Biosci..
[20] P. Hebert,et al. Genome size variation in aphids , 1995 .
[21] M. Plohl,et al. Characterization of two abundant satellite DNAs from the mealworm Tenebrio obscurus , 1994, Journal of Molecular Evolution.
[22] M. Ravosa. Body size in mammalian paleobiology: Estimation and biological implications , 1993, International Journal of Primatology.
[23] F. Rohlf,et al. A revolution morphometrics. , 1993, Trends in ecology & evolution.
[24] C. Juan,et al. Genome size in Tribolium flour-beetles: inter- and intraspecific variation , 1991 .
[25] Mark Kot,et al. Adaptation: Statistics and a Null Model for Estimating Phylogenetic Effects , 1990 .
[26] C. Juan,et al. C-banding and DNA content in seven species of Tenebrionidae (Coleoptera) , 1989 .
[27] K. S. Rai,et al. PHENOTYPIC CORRELATES OF GENOME SIZE VARIATION IN AEDES ALBOPICTUS , 1989, Evolution; international journal of organic evolution.
[28] I. McLAREN,et al. Evolutionary and ecological significance of genome sizes in the copepod genus Pseudocalanus , 1989 .
[29] I. McLAREN,et al. Body sizes, development rates, and genome sizes among Calanus species , 1988, Hydrobiologia.
[30] A. Larson,et al. DEVELOPMENTAL CORRELATES OF GENOME SIZE IN PLETHODONTID SALAMANDERS AND THEIR IMPLICATIONS FOR GENOME EVOLUTION , 1987, Evolution; international journal of organic evolution.
[31] J. Felsenstein. Phylogenies and the Comparative Method , 1985, The American Naturalist.
[32] L. Heaney. ISLAND AREA AND BODY SIZE OF INSULAR MAMMALS: EVIDENCE FROM THE TRI‐COLORED SQUIRREL (CALLOSCIURUS PREVOSTI) OF SOUTHEAST ASIA , 1978, Evolution; international journal of organic evolution.
[33] R. Hinegardner,et al. Cellular DNA content of the Mollusca. , 1974, Comparative biochemistry and physiology. A, Comparative physiology.
[34] M. Bennett,et al. Nuclear DNA content and minimum generation time in herbaceous plants , 1972, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[35] M. Bennett,et al. The duration of meiosis , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[36] M. Bennett,et al. The duration of meiosis in pollen mother cells of wheat, rye and Triticale , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[37] J. McLeish,et al. Measurements of deoxyribosenucleic acid (DNA) in higher plants by Feulgen photometry and chemical methods , 1961 .
[38] Joan Pons. Evolución del DNA satélite en el género Pimelia , 1999 .
[39] C.J.F. ter Braak,et al. CANOCO Reference Manual and User's Guide to Canoco for Windows: Software for Canonical Community Ordination (Version 4) , 1998 .
[40] C. Juan,et al. Genome size, chromosomes, and egg-chorion ultrastructure in the evolution of Chrysomelinae , 1994 .
[41] C. Juan,et al. New Chromosomal Findings on The Spanish Tenebrionidae (Coleoptera) , 1989 .
[42] G. Dover. The eukaryotic genome in development and evolution: B. John and G. Miklos, Allen & Unwin, 1988. £14.95 (pbk) (xviii + 416 pages) ISBN 0 04 575033 5 , 1989 .
[43] E. Rasch. DNA "standards" and the range of accurate DNA estimates by Feulgen absorption microspectrophotometry. , 1985, Progress in clinical and biological research.
[44] T. Cavalier-smith. The Evolution of genome size , 1985 .
[45] E. Olmo. Nucleotype and cell size in vertebrates: a review. , 1983, Basic and applied histochemistry.
[46] A. Sparrow,et al. THE USE OF NUCLEAR AND CHROMOSOMAL VARIABLES IN DETERMINING AND PREDICTING RADIOSENSITIVITES , 1964 .