Controlling vortex chirality in hexagonal building blocks of artificial spin ice

We exploit dipolar coupling to control the magnetic states in assemblies of single-domain magnetic nanoislands, arranged in one, two and three adjacent hexagonal rings. On tailoring the shape anisotropy of specific islands, and thus their switching fields, we achieve particular target states with near perfect reliability, and are able to control the chirality of the vortex target states. The magnetic states are observed during magnetization reversal with x-ray photoemission electron microscopy and our results are generally in excellent agreement with a numerical model based on point dipoles and realistic values of disorder. We conclude with a quantitative discussion of how our results depend on disorder and the chosen bias in shape anisotropy.

[1]  C. Marrows,et al.  Erratum: Disorder Strength and Field-Driven Ground State Domain Formation in Artificial Spin Ice: Experiment, Simulation, and Theory [Phys. Rev. Lett.109, 037203 (2012)] , 2013 .

[2]  E. Mengotti,et al.  Artificial kagome spin ice: dimensional reduction, avalanche control and emergent magnetic monopoles , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  Yusuke Watanabe,et al.  Electrical determination of relative chirality direction in a Co/Cu/Co ferromagnetic ring , 2012 .

[4]  L. Heyderman,et al.  Emergent magnetic monopoles, disorder, and avalanches in artificial kagome spin ice (invited) , 2012 .

[5]  H. Braun Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons , 2012 .

[6]  Jianping Wang,et al.  Spin transfer torque programming dipole coupled nanomagnet arrays , 2012 .

[7]  A Stein,et al.  Disorder strength and field-driven ground state domain formation in artificial spin ice: experiment, simulation, and theory. , 2011, Physical review letters.

[8]  S. M. Stishov,et al.  Itinerant helimagnet MnSi , 2011 .

[9]  C. Ross,et al.  360° domain wall mediated reversal in rhombic Co/Cu/NiFe magnetic rings , 2011 .

[10]  R. Allenspach,et al.  Magnetologic devices fabricated by nanostencil lithography , 2010, Nanotechnology.

[11]  Gia-Wei Chern,et al.  Two-stage ordering of spins in dipolar spin ice on the kagome lattice. , 2009, Physical review letters.

[12]  R. Moessner,et al.  Magnetic multipole analysis of kagome and artificial spin-ice dipolar arrays , 2009, 0906.3937.

[13]  L. Heyderman,et al.  Dipolar energy states in clusters of perpendicular magnetic nanoislands , 2009 .

[14]  Guido Meier,et al.  Current controlled random-access memory based on magnetic vortex handedness , 2008 .

[15]  L. Heyderman,et al.  Building blocks of an artificial kagome spin ice : Photoemission electron microscopy of arrays of ferromagnetic islands , 2008 .

[16]  A. Remhof,et al.  Magnetostatic interactions on a square lattice , 2008 .

[17]  J. Cumings,et al.  Direct observation of the ice rule in an artificial kagome spin ice , 2008, 0802.0034.

[18]  R. Engel-Herbert,et al.  Systematic investigation of Permalloy nanostructures for magnetologic applications , 2007 .

[19]  C. Ross,et al.  Reading and writing of vortex circulation in pseudo-spin-valve ring devices , 2006 .

[20]  Y. Gaididei,et al.  Equilibrium magnetisation structures in ferromagnetic nanorings , 2006, cond-mat/0604228.

[21]  V. Crespi,et al.  Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands , 2006, Nature.

[22]  A Imre,et al.  Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata , 2006, Science.

[23]  R. Divan,et al.  Magnetic vortex core dynamics in cylindrical ferromagnetic dots. , 2005, Physical review letters.

[24]  H. Akinaga,et al.  Vortex-chirality control in mesoscopic disk magnets observed by photoelectron emission microscopy , 2005 .

[25]  C. David,et al.  Switching processes and switching reproducibility in ferromagnetic ring structures , 2004 .

[26]  R. Wiesendanger,et al.  Direct Observation of Internal Spin Structure of Magnetic Vortex Cores , 2002, Science.

[27]  Howard A. Padmore,et al.  X-ray photoemission electron microscopy, a tool for the investigation of complex magnetic structures. , 2001 .

[28]  A. Bleloch,et al.  Observation of a bi-domain state and nucleation free switching in mesoscopic ring magnets. , 2001, Physical review letters.

[29]  R. Cowburn,et al.  Single-Domain Circular Nanomagnets , 1999 .

[30]  O. Hellwig,et al.  Competing Interactions in Patterned and Self-Assembled Magnetic Nanostructures , 2013 .

[31]  Laura J. Heyderman,et al.  Real-space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice , 2011 .

[32]  Aaron Stein,et al.  Thermal ground-state ordering and elementary excitations in artificial magnetic square ice , 2011 .