Localized Solutions of a Semilinear Parabolic Equation with a Recurrent Nonstationary Asymptotics

We examine the behavior of positive bounded, localized solutions of semilinear parabolic equations $u_t=\Delta u+f(u)$ on $\mathbb{R}^N$. Here $f\in C^1$, $f(0)=0$, and a localized solution refers to a solution $u(x,t)$ which decays to 0 as $x\to\infty$ uniformly with respect to $t>0$. In all previously known examples, bounded, localized solutions are convergent or at least quasi-convergent in the sense that all their limit profiles as $t\to\infty$ are steady states. If $N=1$, then all positive bounded, localized solutions are quasi-convergent. We show that such a general conclusion is not valid if $N\ge 3$, even if the solutions in question are radially symmetric. Specifically, we give examples of positive bounded, localized solutions whose $\omega$-limit set is infinite and contains only one equilibrium.

[1]  François Hamel,et al.  Spreading Speeds for Some Reaction-Diffusion Equations with General Initial Conditions , 2009, SIAM J. Math. Anal..

[2]  Bei Hu Blow-up Theories for Semilinear Parabolic Equations , 2011 .

[3]  Andrej Zlatos,et al.  Sharp transition between extinction and propagation of reaction , 2005, math/0504333.

[4]  T. Gallay,et al.  Distribution of Energy and Convergence to Equilibria in Extended Dissipative Systems , 2012, 1212.1573.

[5]  M. Pino,et al.  The problem of uniqueness of the limit in a semilinear heat equation , 1999 .

[6]  Xuefeng Wang,et al.  On the Cauchy problem for reaction-diffusion equations , 1993 .

[7]  P. Polácik,et al.  Nonconvergent bounded solutions of semilinear heat equations on arbitrary domains , 2002 .

[8]  E. Yanagida,et al.  On bounded and unbounded global solutions of a supercritical semilinear heat equation , 2003 .

[9]  P. Polácik,et al.  Nonconvergent Bounded Trajectories in Semilinear Heat Equations , 1996 .

[10]  F. Merle,et al.  Classification of type I and type II behaviors for a supercritical nonlinear heat equation , 2009 .

[11]  P. Polácik,et al.  Threshold Solutions and Sharp Transitions for Nonautonomous Parabolic Equations on $${\mathbb{R}^N}$$ , 2011 .

[12]  N. Mizoguchi On the behavior of solutions for a semilinear parabolic equation with supercritical nonlinearity , 2002 .

[13]  M. Fila,et al.  Homoclinic and heteroclinic orbits for a semilinear parabolic equation , 2011 .

[14]  M. Jendoubi CONVERGENCE TO STEADY STATES OF SOLUTIONS OF NON-AUTONOMOUS HEAT EQUATIONS IN R , 2005 .

[15]  P. Polácik,et al.  Convergence to a steady state for asymptotically autonomous semilinear heat equations on RN , 2011 .

[16]  P. Polácik,et al.  Structure of periodic solutions and asymptotic behavior for time-periodic reaction-diffusion equations on ${\bf R}$ , 2000, Advances in Differential Equations.

[17]  E. Yanagida,et al.  Global unbounded solutions of the Fujita equation in the intermediate range , 2014 .

[18]  E. Yanagida,et al.  Nonstabilizing solutions and grow-up set for a supercritical semilinear diffusion equation , 2004, Differential and Integral Equations.

[19]  J. Eckmann,et al.  Coarsening by Ginzburg–Landau Dynamics , 1997, chao-dyn/9706012.

[20]  F. Merle,et al.  On Nonexistence of type II blowup for a supercritical nonlinear heat equation , 2004 .

[21]  J. Roquejoffre,et al.  Nontrivial large-time behaviour in bistable reaction–diffusion equations , 2009 .

[22]  Pavol Quittner,et al.  Superlinear Parabolic Problems , 2007, Birkhäuser Advanced Texts Basler Lehrbücher.

[23]  J. Rougemont Dynamics of kinks in the Ginzburg-Landau equation: approach to a metastable shape and collapse of embedded pairs of kinks , 1998, patt-sol/9808007.

[24]  R. Chill,et al.  Convergence to Steady States of Solutions of Non-autonomous Heat Equations in $$\mathbb{R}^{N}$$ , 2007 .

[25]  E. Feireisl,et al.  Convergence to a ground state as a threshold phenomenon in nonlinear parabolic equations , 1997, Differential and Integral Equations.

[26]  M. Jendoubi,et al.  CONVERGENCE TO EQUILIBRIUM FOR SEMILINEAR PARABOLIC PROBLEMS IN , 2002 .

[27]  P. Polácik,et al.  Asymptotic periodicity of positive solutions of reaction diffusion equations on a ball. , 1996 .

[28]  Xuefeng Wang,et al.  On the stability and instability of positive steady states of a semilinear heat equation in ℝn , 1992 .

[29]  L. Simon Asymptotics for a class of non-linear evolution equations, with applications to geometric problems , 1983 .

[30]  Howard A. Levine,et al.  The Role of Critical Exponents in Blowup Theorems , 1990, SIAM Rev..

[31]  P. Polácik Threshold solutions and sharp transitions for nonautonomous parabolic equations on R N , 2009 .

[32]  M. Shub Global Stability of Dynamical Systems , 1986 .

[33]  Yihong Du,et al.  Locally uniform convergence to an equilibrium for nonlinear parabolic equations on $R^N$ , 2015 .

[34]  Hiroshi Matano,et al.  Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation , 1982 .

[35]  E. Yanagida Irregular Behavior of Solutions for Fisher’s Equation , 2007 .

[36]  Victor A. Galaktionov,et al.  Continuation of blowup solutions of nonlinear heat equations in several space dimensions , 1997 .

[37]  Sigurd B. Angenent,et al.  The zero set of a solution of a parabolic equation. , 1988 .

[38]  J. Roquejoffre,et al.  Stability of travelling waves in a model for conical flames in two space dimensions , 2004 .

[39]  Yihong Du,et al.  Convergence and sharp thresholds for propagation in nonlinear diffusion problems , 2010 .

[40]  Hiroshi Matano,et al.  Convergence of solutions of one-dimensional semilinear parabolic equations , 1978 .

[41]  E. Yanagida,et al.  A Liouville property and quasiconvergence for a semilinear heat equation , 2005 .

[42]  B. M. Fulk MATH , 1992 .