Laser jetting of femto-liter metal droplets for high resolution 3D printed structures

Laser induced forward transfer (LIFT) is employed in a special, high accuracy jetting regime, by adequately matching the sub-nanosecond pulse duration to the metal donor layer thickness. Under such conditions, an effective solid nozzle is formed, providing stability and directionality to the femto-liter droplets which are printed from a large gap in excess of 400 μm. We illustrate the wide applicability of this method by printing several 3D metal objects. First, very high aspect ratio (A/R > 20), micron scale, copper pillars in various configuration, upright and arbitrarily bent, then a micron scale 3D object composed of gold and copper. Such a digital printing method could serve the generation of complex, multi-material, micron-scale, 3D materials and novel structures.

[1]  C. Grigoropoulos,et al.  All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles , 2007 .

[2]  Ute Zschieschang,et al.  Flexible Organic Circuits with Printed Gate Electrodes , 2003 .

[3]  Ludovic Rapp,et al.  Pulsed-laser printing of silver nanoparticles ink: control of morphological properties. , 2011, Optics express.

[4]  Arved C. Hübler,et al.  Printed Paper Photovoltaic Cells , 2011 .

[5]  Jacob T. Robinson,et al.  Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. , 2012, Nature nanotechnology.

[6]  Andrew G. Glen,et al.  APPL , 2001 .

[7]  Chao Sun,et al.  Toward 3D Printing of Pure Metals by Laser‐Induced Forward Transfer , 2015, Advanced materials.

[8]  A. Tünnermann,et al.  Femtosecond, picosecond and nanosecond laser ablation of solids , 1996 .

[9]  Vicentiu Grosu,et al.  Microdroplet deposition by laser-induced forward transfer , 2005 .

[10]  Shichao Zhang,et al.  Nitrogen-doped reduced graphene oxide for high-performance flexible all-solid-state micro-supercapacitors , 2014 .

[11]  Aiko Narazaki,et al.  Nano- and Microdot Array Formation of FeSi2 by Nanosecond Excimer Laser-Induced Forward Transfer , 2008 .

[12]  Ullrich Scherf,et al.  Direct Ink‐Jet Printing of Ag–Cu Nanoparticle and Ag‐Precursor Based Electrodes for OFET Applications , 2007 .

[13]  John A. Rogers,et al.  Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes , 2009, Science.

[14]  J. Endrino,et al.  A special issue on advances in solar selective nanostructures and thin films , 2013 .

[15]  Rafael Yuste,et al.  Nanotools for neuroscience and brain activity mapping. , 2013, ACS nano.

[16]  Shanhui Fan,et al.  Erratum: Photonic crystals: putting a new twist on light , 1997, Nature.

[17]  Costas P. Grigoropoulos,et al.  Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication , 2010 .

[18]  Ioanna Zergioti,et al.  Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer , 2006 .

[19]  Costas Fotakis,et al.  Microdeposition of metal and oxide structures using ultrashort laser pulses , 1998 .

[20]  Robert A. Street,et al.  All jet-printed polymer thin-film transistor active-matrix backplanes , 2004 .

[21]  T. Schaedler,et al.  Toward Lighter, Stiffer Materials , 2013, Science.

[22]  A. Geim,et al.  Nanofabricated media with negative permeability at visible frequencies , 2005, Nature.

[23]  M. Shatzkes,et al.  Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces , 1970 .

[24]  A. Sa’ar,et al.  Laser Transfer of Metals and Metal Alloys for Digital Microfabrication of 3D Objects. , 2015, Small.

[25]  F. J. Adrian,et al.  Metal deposition from a supported metal film using an excimer laser , 1986 .

[26]  J. Lewis,et al.  3D Printing of Interdigitated Li‐Ion Microbattery Architectures , 2013, Advanced materials.

[27]  D. A. Willis,et al.  The effect of melting-induced volumetric expansion on initiation of laser-induced forward transfer , 2007 .

[28]  Robert Langer,et al.  Small-scale systems for in vivo drug delivery , 2003, Nature Biotechnology.

[29]  Boris N. Chichkov,et al.  Laser-induced jet formation and droplet ejection from thin metal films , 2012 .

[30]  L. Overmeyer,et al.  Time-resolved studies of femtosecond-laser induced melt dynamics. , 2012, Optics express.

[31]  Tamás Szörényi,et al.  Pulsed laser ablative deposition of thin metal films , 1989 .

[32]  A. Koizumi,et al.  Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode , 2014 .

[33]  H. Uršič,et al.  Percolation in the dielectric function of Pb(Zr, Ti)O3 – Pb2Ru2O6.5 ferroelectric – metal composites , 2014 .

[34]  A. Sa’ar,et al.  Digital laser printing of aluminum micro-structure on thermally sensitive substrates , 2015 .

[35]  Daniel A. Steingart,et al.  A super ink jet printed zinc–silver 3D microbattery , 2009 .

[36]  J. Joannopoulos,et al.  Photonic crystals: putting a new twist on light , 1997, Nature.

[37]  Nils Lass,et al.  Enhanced Liquid Metal Micro Droplet Generation by Pneumatic Actuation Based on the StarJet Method , 2013, Micromachines.

[38]  Arved C. Hübler,et al.  Fully mass printed loudspeakers on paper , 2012 .

[39]  H. Sirringhaus,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2000, Science.

[40]  Supersonic laser-induced jetting of aluminum micro-droplets , 2015 .

[41]  Mikkel Jørgensen,et al.  25th Anniversary Article: Rise to Power – OPV‐Based Solar Parks , 2014, Advanced materials.

[42]  Youngil Lee,et al.  Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics , 2008, Nanotechnology.

[43]  L. Valdevit,et al.  Ultralight Metallic Microlattices , 2011, Science.

[44]  B. Chichkov,et al.  Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses , 2014, Nature Communications.