Numerical scheme for a spatially inhomogeneous matrix-valued quantum Boltzmann equation

We develop an efficient algorithm for a spatially inhomogeneous matrix-valued quantum Boltzmann equation derived from the Hubbard model. The distribution functions are 2 i� 2 matrix-valued to accommodate the spin degree of freedom, and the scalar quantum Boltzmann equation is recovered as a special case when all matrices are proportional to the identity. We use Fourier discretization and fast Fourier transform to efficiently evaluate the collision kernel with spectral accuracy, and numerically investigate periodic, Dirichlet and Maxwell boundary conditions. Model simulations quantify the convergence to local and global thermal equilibrium.

[1]  R. Peierls,et al.  Zur kinetischen Theorie der Wärmeleitung in Kristallen , 1929 .

[2]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[3]  B. Wennberg Regularity in the Boltzmann equation and the Radon transform , 1994 .

[4]  S. Possanner,et al.  Diffusion limit of a generalized matrix Boltzmann equation forspin-polarized transport , 2011 .

[5]  Semikoz,et al.  Kinetics of Bose condensation. , 1995, Physical review letters.

[6]  B. Vacchini,et al.  Quantum linear Boltzmann equation , 2009, 0904.3911.

[7]  R. LeVeque Numerical methods for conservation laws , 1990 .

[8]  R. Hajj Diffusion models for spin transport derived from the spinor Boltzmann equation , 2014 .

[9]  E. A. Uehling,et al.  Transport Phenomena in Einstein-Bose and Fermi-Dirac Gases. I , 1933 .

[10]  Christian B Mendl,et al.  Matrix-valued Boltzmann equation for the nonintegrable Hubbard chain. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Francis Filbet,et al.  A NUMERICAL SCHEME FOR THE QUANTUM BOLTZMANN EQUATION WITH STIFF COLLISION TERMS , 2012 .

[13]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[14]  Lloyd N. Trefethen,et al.  The Exponentially Convergent Trapezoidal Rule , 2014, SIAM Rev..

[15]  C. Mendl,et al.  Matrix-valued Boltzmann equation for the Hubbard chain. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Christian B. Mendl,et al.  Matrix-valued Quantum Lattice Boltzmann Method , 2013, ArXiv.

[17]  J. Lukkarinen,et al.  Derivation of a matrix-valued Boltzmann equation for the Hubbard model , 2013, 1306.0934.

[18]  L. Nordheim,et al.  On the Kinetic Method in the New Statistics and Its Application in the Electron Theory of Conductivity , 1928 .

[19]  Lexing Ying,et al.  A fast spectral algorithm for the quantum Boltzmann collision operator , 2012 .

[20]  Lorenzo Pareschi,et al.  Fast algorithms for computing the Boltzmann collision operator , 2006, Math. Comput..

[21]  T. Carleman,et al.  Problèmes mathématiques dans la théorie cinétique des gaz , 1957 .