The maintenance of chromosome structure: positioning and functioning of SMC complexes

[1]  Boris Lenhard,et al.  A Cohesin-Independent Role for NIPBL at Promoters Provides Insights in CdLS , 2014, PLoS genetics.

[2]  K. Shirahige,et al.  Smc5/6-mediated regulation of replication progression contributes to chromosome assembly during mitosis in human cells , 2014, Molecular biology of the cell.

[3]  Björn Schumacher,et al.  Loss of Caenorhabditis elegans BRCA1 Promotes Genome Stability During Replication in smc-5 Mutants , 2014, Genetics.

[4]  F. Uhlmann,et al.  Biochemical reconstitution of topological DNA binding by the cohesin ring , 2013, Nature.

[5]  F. Uhlmann,et al.  Condensin aids sister chromatid decatenation by topoisomerase II , 2013, Nucleic acids research.

[6]  T. Stearns,et al.  Methods in yeast genetics , 2013 .

[7]  Jesse R. Dixon,et al.  Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells , 2013, Proceedings of the National Academy of Sciences.

[8]  A. Lander,et al.  Reduction of Nipbl impairs cohesin loading locally and affects transcription but not cohesion-dependent functions in a mouse model of Cornelia de Lange Syndrome. , 2013, Biochimica et biophysica acta.

[9]  Alexander van Oudenaarden,et al.  Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins , 2013, Proceedings of the National Academy of Sciences.

[10]  S. Bekiranov,et al.  Measuring Chromatin Interaction Dynamics on the Second Time Scale at Single-Copy Genes , 2013, Science.

[11]  Sevinç Ercan,et al.  Genome-wide analysis of condensin binding in Caenorhabditis elegans , 2013, Genome Biology.

[12]  J. Ellenberg,et al.  Wapl is an essential regulator of chromatin structure and chromosome segregation , 2013, Nature.

[13]  Ryuichiro Nakato,et al.  DROMPA: easy-to-handle peak calling and visualization software for the computational analysis and validation of ChIP-seq data , 2013, Genes to cells : devoted to molecular & cellular mechanisms.

[14]  L. Mirny,et al.  Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data , 2013, Nature Reviews Genetics.

[15]  J. Marko,et al.  The SMC1-SMC3 cohesin heterodimer structures DNA through supercoiling-dependent loop formation , 2013, Nucleic acids research.

[16]  F. Uhlmann,et al.  Budding Yeast Wapl Controls Sister Chromatid Cohesion Maintenance and Chromosome Condensation , 2013, Current Biology.

[17]  M. Bermudez-lopez,et al.  A SUMO-Dependent Step during Establishment of Sister Chromatid Cohesion , 2012, Current Biology.

[18]  A. Jarmuz,et al.  SUMOylation of the α-Kleisin Subunit of Cohesin Is Required for DNA Damage-Induced Cohesion , 2012, Current Biology.

[19]  K. Nasmyth,et al.  Cohesin’s DNA Exit Gate Is Distinct from Its Entrance Gate and Is Regulated by Acetylation , 2012, Cell.

[20]  Jingrong Chen,et al.  Cohesin Acetylation Promotes Sister Chromatid Cohesion Only in Association with the Replication Machinery* , 2012, The Journal of Biological Chemistry.

[21]  T. Hirano Condensins: universal organizers of chromosomes with diverse functions. , 2012, Genes & development.

[22]  Gabriele Gillessen-Kaesbach,et al.  HDAC8 mutations in Cornelia de Lange Syndrome affect the cohesin acetylation cycle , 2012, Nature.

[23]  Hongtao Yu,et al.  Scc1 sumoylation by Mms21 promotes sister chromatid recombination through counteracting Wapl. , 2012, Genes & development.

[24]  K. Nasmyth Cohesin: a catenase with separate entry and exit gates? , 2011, Nature Cell Biology.

[25]  C. Haering,et al.  Condensin structures chromosomal DNA through topological links , 2011, Nature Structural &Molecular Biology.

[26]  T. Hirano,et al.  The relative ratio of condensin I to II determines chromosome shapes. , 2011, Genes & development.

[27]  Yoshinori Watanabe,et al.  Condensin association with histone H2A shapes mitotic chromosomes , 2011, Nature.

[28]  Nicholas A. Lyons,et al.  Cdk1-dependent destruction of Eco1 prevents cohesion establishment after S phase. , 2011, Molecular cell.

[29]  M. Oyama,et al.  The initial phase of chromosome condensation requires Cdk1-mediated phosphorylation of the CAP-D3 subunit of condensin II. , 2011, Genes & development.

[30]  T. Itoh,et al.  Chromosome length influences replication-induced topological stress , 2011, Nature.

[31]  J. Diffley,et al.  Positive Supercoiling of Mitotic DNA Drives Decatenation by Topoisomerase II in Eukaryotes , 2011, Science.

[32]  B. Meyer,et al.  An MLL/COMPASS subunit functions in the C. elegans dosage compensation complex to target X chromosomes for transcriptional regulation of gene expression. , 2011, Genes & Development.

[33]  J. Ihle,et al.  Chromatin condensation via the condensin II complex is required for peripheral T‐cell quiescence , 2011, The EMBO journal.

[34]  C. Morrison,et al.  Roles of Vertebrate Smc5 in Sister Chromatid Cohesion and Homologous Recombinational Repair , 2011, Molecular and Cellular Biology.

[35]  K. Nasmyth,et al.  ATP Hydrolysis Is Required for Relocating Cohesin from Sites Occupied by Its Scc2/4 Loading Complex , 2011, Current Biology.

[36]  A. Hyman,et al.  Sororin Mediates Sister Chromatid Cohesion by Antagonizing Wapl , 2010, Cell.

[37]  Jian-hua Song,et al.  Sororin cooperates with the acetyltransferase Eco2 to ensure DNA replication-dependent sister chromatid cohesion , 2010, Proceedings of the National Academy of Sciences.

[38]  K. Nasmyth,et al.  A Direct Role for Cohesin in Gene Regulation and Ecdysone Response in Drosophila Salivary Glands , 2010, Current Biology.

[39]  David A. Orlando,et al.  Mediator and Cohesin Connect Gene Expression and Chromatin Architecture , 2010, Nature.

[40]  V. Guacci,et al.  Systematic Reduction of Cohesin Differentially Affects Chromosome Segregation, Condensation, and DNA Repair , 2010, Current Biology.

[41]  B. Meyer Targeting X chromosomes for repression. , 2010, Current opinion in genetics & development.

[42]  Petra C. Schwalie,et al.  A CTCF-independent role for cohesin in tissue-specific transcription. , 2010, Genome research.

[43]  S. Grewal,et al.  Centromeric Localization of Dispersed Pol III Genes in Fission Yeast , 2010, Molecular biology of the cell.

[44]  Christel Krueger,et al.  Cohesin Is Required for Higher-Order Chromatin Conformation at the Imprinted IGF2-H19 Locus , 2009, PLoS genetics.

[45]  T. Hirano,et al.  Releasing cohesin from chromosome arms in early mitosis: opposing actions of Wapl-Pds5 and Sgo1. , 2009, Genes & development.

[46]  B. Hallgrímsson,et al.  Multiple Organ System Defects and Transcriptional Dysregulation in the Nipbl +/− Mouse, a Model of Cornelia de Lange Syndrome , 2009, PLoS genetics.

[47]  Raymond K. Auerbach,et al.  Mapping accessible chromatin regions using Sono-Seq , 2009, Proceedings of the National Academy of Sciences.

[48]  D. Dorsett,et al.  Regulation of the Drosophila Enhancer of split and invected-engrailed Gene Complexes by Sister Chromatid Cohesion Proteins , 2009, PloS one.

[49]  D. D'Amours,et al.  Polo kinase regulates mitotic chromosome condensation by hyperactivation of condensin DNA supercoiling activity. , 2009, Molecular cell.

[50]  P. Fraser,et al.  Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus , 2009, Nature.

[51]  Zhe Zhang,et al.  Transcriptional Dysregulation in NIPBL and Cohesin Mutant Human Cells , 2009, PLoS biology.

[52]  Xiaolan Zhao,et al.  Architecture of the Smc5/6 Complex of Saccharomyces cerevisiae Reveals a Unique Interaction between the Nse5-6 Subcomplex and the Hinge Regions of Smc5 and Smc6* , 2009, Journal of Biological Chemistry.

[53]  Karl Mechtler,et al.  Building sister chromatid cohesion: smc3 acetylation counteracts an antiestablishment activity. , 2009, Molecular cell.

[54]  T. Itoh,et al.  Budding Yeast Wpl1(Rad61)-Pds5 Complex Counteracts Sister Chromatid Cohesion-Establishing Reaction , 2009, Current Biology.

[55]  M. Eisen,et al.  A condensin-like dosage compensation complex acts at a distance to control expression throughout the genome. , 2009, Genes & development.

[56]  J. Yates,et al.  Three Distinct Condensin Complexes Control C. elegans Chromosome Dynamics , 2009, Current Biology.

[57]  C. K. Schmidt,et al.  Conserved features of cohesin binding along fission yeast chromosomes , 2009, Genome Biology.

[58]  G. Bosco,et al.  Chromosome Alignment and Transvection Are Antagonized by Condensin II , 2008, Science.

[59]  L. Schaffer,et al.  Localization of Smc5/6 to centromeres and telomeres requires heterochromatin and SUMO, respectively , 2008, The EMBO journal.

[60]  A. Strunnikov,et al.  Cooperation of Sumoylated Chromosomal Proteins in rDNA Maintenance , 2008, PLoS genetics.

[61]  T. Itoh,et al.  Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. , 2008, Genes & development.

[62]  D. Engelke,et al.  Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. , 2008, Genes & development.

[63]  Steven P. Gygi,et al.  A Molecular Determinant for the Establishment of Sister Chromatid Cohesion , 2008, Science.

[64]  Philip East,et al.  Eco1-Dependent Cohesin Acetylation During Establishment of Sister Chromatid Cohesion , 2008, Science.

[65]  K. Shirahige,et al.  Condensin-Dependent rDNA Decatenation Introduces a Temporal Pattern to Chromosome Segregation , 2008, Current Biology.

[66]  Xuewen Pan,et al.  Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. , 2008, Molecular cell.

[67]  K. Nasmyth,et al.  The cohesin ring concatenates sister DNA molecules , 2008, Nature.

[68]  David J. Reiss,et al.  CTCF physically links cohesin to chromatin , 2008, Proceedings of the National Academy of Sciences.

[69]  Z. M. Petrushenko,et al.  MukB acts as a macromolecular clamp in DNA condensation , 2008, Nature Structural &Molecular Biology.

[70]  N. Proudfoot,et al.  Cohesin Complex Promotes Transcriptional Termination between Convergent Genes in S. pombe , 2008, Cell.

[71]  J. Kissil,et al.  Cohesins localize with CTCF at the KSHV latency control region and at cellular c‐myc and H19/Igf2 insulators , 2008, The EMBO journal.

[72]  H. Aburatani,et al.  Cohesin mediates transcriptional insulation by CCCTC-binding factor , 2008, Nature.

[73]  Stephan Sauer,et al.  Cohesins Functionally Associate with CTCF on Mammalian Chromosome Arms , 2008, Cell.

[74]  Michael B. Eisen,et al.  Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome , 2008, Chromosoma.

[75]  A. Lehmann,et al.  Identification of the Proteins, Including MAGEG1, That Make Up the Human SMC5-6 Protein Complex , 2007, Molecular and Cellular Biology.

[76]  K. Nasmyth,et al.  A physical assay for sister chromatid cohesion in vitro. , 2007, Molecular cell.

[77]  D. Koshland,et al.  DNA Double-Strand Breaks Trigger Genome-Wide Sister-Chromatid Cohesion Through Eco1 (Ctf7) , 2007, Science.

[78]  K. Shirahige,et al.  Postreplicative Formation of Cohesion Is Required for Repair and Induced by a Single DNA Break , 2007, Science.

[79]  Hongtao Yu,et al.  The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins , 2007, Nature Structural &Molecular Biology.

[80]  J. Peters,et al.  Aurora B controls the association of condensin I but not condensin II with mitotic chromosomes , 2007, Journal of Cell Science.

[81]  S. Yokoyama,et al.  Analysis of the role of Aurora B on the chromosomal targeting of condensin I , 2007, Nucleic acids research.

[82]  J. Haber,et al.  Anaphase Onset Before Complete DNA Replication with Intact Checkpoint Responses , 2007, Science.

[83]  C. Sunkel,et al.  Condensin I binds chromatin early in prophase and displays a highly dynamic association with Drosophila mitotic chromosomes , 2007, Chromosoma.

[84]  T. Hirano,et al.  Human Wapl Is a Cohesin-Binding Protein that Promotes Sister-Chromatid Resolution in Mitotic Prophase , 2006, Current Biology.

[85]  J. Palecek,et al.  The Smc5-Smc6 DNA Repair Complex , 2006, Journal of Biological Chemistry.

[86]  J. Peters,et al.  Wapl Controls the Dynamic Association of Cohesin with Chromatin , 2006, Cell.

[87]  B. Meyer,et al.  Clustered DNA motifs mark X chromosomes for repression by a dosage compensation complex , 2006, Nature.

[88]  Katsuhiko Shirahige,et al.  Establishment of sister chromatid cohesion at the S. cerevisiae replication fork. , 2006, Molecular cell.

[89]  S. Jentsch,et al.  PCNA controls establishment of sister chromatid cohesion during S phase. , 2006, Molecular cell.

[90]  J. Ellenberg,et al.  Live-Cell Imaging Reveals a Stable Cohesin-Chromatin Interaction after but Not before DNA Replication , 2006, Current Biology.

[91]  T. Itoh,et al.  Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways. , 2006, Molecular cell.

[92]  K. Nasmyth,et al.  Human Scc4 Is Required for Cohesin Binding to Chromatin, Sister-Chromatid Cohesion, and Mitotic Progression , 2006, Current Biology.

[93]  J. Yates,et al.  The Nse5-Nse6 Dimer Mediates DNA Repair Roles of the Smc5-Smc6 Complex , 2006, Molecular and Cellular Biology.

[94]  J. Ellenberg,et al.  Condensin I Stabilizes Chromosomes Mechanically through a Dynamic Interaction in Live Cells , 2006, Current Biology.

[95]  H. Aburatani,et al.  Genomic approach for the understanding of dynamic aspect of chromosome behavior. , 2006, Methods in enzymology.

[96]  N. Cozzarelli,et al.  The Saccharomyces cerevisiae Smc2/4 Condensin Compacts DNA into (+) Chiral Structures without Net Supercoiling* , 2005, Journal of Biological Chemistry.

[97]  Kim Nasmyth,et al.  A Topological Interaction between Cohesin Rings and a Circular Minichromosome , 2005, Cell.

[98]  I. Krantz,et al.  Precocious sister chromatid separation (PSCS) in Cornelia de Lange syndrome , 2005, American journal of medical genetics. Part A.

[99]  Hongtao Yu,et al.  Human MMS21/NSE2 Is a SUMO Ligase Required for DNA Repair , 2005, Molecular and Cellular Biology.

[100]  J. Gustafsson,et al.  EID3 is a novel EID family member and an inhibitor of CBP-dependent co-activation , 2005, Nucleic acids research.

[101]  M. Kirschner,et al.  Sororin, a substrate of the anaphase-promoting complex, is required for sister chromatid cohesion in vertebrates. , 2005, Molecular cell.

[102]  Xiaolan Zhao,et al.  A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[103]  T. Eydmann,et al.  SMC5 and SMC6 genes are required for the segregation of repetitive chromosome regions , 2005, Nature Cell Biology.

[104]  F. Z. Watts,et al.  Nse2, a Component of the Smc5-6 Complex, Is a SUMO Ligase Required for the Response to DNA Damage , 2005, Molecular and Cellular Biology.

[105]  H. Shinagawa,et al.  Composition and Architecture of the Schizosaccharomyces pombe Rad18 (Smc5-6) Complex , 2005, Molecular and Cellular Biology.

[106]  J. Strathern,et al.  Methods in yeast genetics : a Cold Spring Harbor Laboratory course manual , 2005 .

[107]  J. Ellenberg,et al.  Distinct functions of condensin I and II in mitotic chromosome assembly , 2004, Journal of Cell Science.

[108]  S. Gygi,et al.  Recruitment of Xenopus Scc2 and cohesin to chromatin requires the pre-replication complex , 2004, Nature Cell Biology.

[109]  T. Hirano,et al.  Scc2 Couples Replication Licensing to Sister Chromatid Cohesion in Xenopus Egg Extracts , 2004, Current Biology.

[110]  T. Itoh,et al.  Cohesin relocation from sites of chromosomal loading to places of convergent transcription , 2004, Nature.

[111]  Yuda Fang,et al.  Spatial and temporal regulation of Condensins I and II in mitotic chromosome assembly in human cells. , 2004, Molecular biology of the cell.

[112]  I. Krantz,et al.  Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B , 2004, Nature Genetics.

[113]  T. Hirano,et al.  Real-Time Detection of Single-Molecule DNA Compaction by Condensin I , 2004, Current Biology.

[114]  Tom Strachan,et al.  NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome , 2004, Nature Genetics.

[115]  B. Meyer,et al.  Recruitment and Spreading of the C. elegans Dosage Compensation Complex Along X Chromosomes , 2004, Science.

[116]  R. Skibbens Chl1p, a DNA Helicase-Like Protein in Budding Yeast, Functions in Sister-Chromatid Cohesion , 2004, Genetics.

[117]  C. Sunkel,et al.  Condensin-dependent localisation of topoisomerase II to an axial chromosomal structure is required for sister chromatid resolution during mitosis , 2003, Journal of Cell Science.

[118]  F. Uhlmann,et al.  A Model for ATP Hydrolysis-Dependent Binding of Cohesin to DNA , 2003, Current Biology.

[119]  K. Nasmyth,et al.  ATP Hydrolysis Is Required for Cohesin's Association with Chromosomes , 2003, Current Biology.

[120]  A. F. Neuwald,et al.  Differential Contributions of Condensin I and Condensin II to Mitotic Chromosome Architecture in Vertebrate Cells , 2003, Cell.

[121]  R. Gassmann,et al.  Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes. , 2003, Developmental cell.

[122]  J. Lindsley,et al.  Biochemical Analysis of the Yeast Condensin Smc2/4 Complex , 2003, Journal of Biological Chemistry.

[123]  U. K. Laemmli,et al.  A two-step scaffolding model for mitotic chromosome assembly. , 2003, Developmental cell.

[124]  K. Nasmyth,et al.  Chromosomal Cohesin Forms a Ring , 2003, Cell.

[125]  Sebastian Maurer-Stroh,et al.  Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners. , 2003, Molecular cell.

[126]  T. Hirano,et al.  Hinge‐mediated dimerization of SMC protein is essential for its dynamic interaction with DNA , 2002, The EMBO journal.

[127]  JAMES C. Wang,et al.  Cellular roles of DNA topoisomerases: a molecular perspective , 2002, Nature Reviews Molecular Cell Biology.

[128]  Kim Nasmyth,et al.  Molecular architecture of SMC proteins and the yeast cohesin complex. , 2002, Molecular cell.

[129]  H. Erickson,et al.  Condensin and cohesin display different arm conformations with characteristic hinge angles , 2002, The Journal of cell biology.

[130]  A. Murray,et al.  Mutation of YCS4, a budding yeast condensin subunit, affects mitotic and nonmitotic chromosome behavior. , 2002, Molecular biology of the cell.

[131]  Ian W Duncan,et al.  Transvection effects in Drosophila. , 2002, Annual review of genetics.

[132]  R. Allshire,et al.  Requirement of Heterochromatin for Cohesion at Centromeres , 2001, Science.

[133]  J. Peters,et al.  Cohesin Cleavage by Separase Required for Anaphase and Cytokinesis in Human Cells , 2001, Science.

[134]  S. Gygi,et al.  Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. , 2001, Molecular cell.

[135]  M. Botchan,et al.  Orc mutants arrest in metaphase with abnormally condensed chromosomes. , 2001, Development.

[136]  T. Hirano,et al.  Intermolecular DNA interactions stimulated by the cohesin complex in vitro Implications for sister chromatid cohesion , 2001, Current Biology.

[137]  J. Löwe,et al.  Crystal structure of the SMC head domain: an ABC ATPase with 900 residues antiparallel coiled-coil inserted. , 2001, Journal of molecular biology.

[138]  Frank Eisenhaber,et al.  Pds5 cooperates with cohesin in maintaining sister chromatid cohesion , 2000, Current Biology.

[139]  V. Guacci,et al.  Chromosomal Addresses of the Cohesin Component Mcd1p , 2000, The Journal of cell biology.

[140]  V. Guacci,et al.  Pds5p Is an Essential Chromosomal Protein Required for Both Sister Chromatid Cohesion and Condensation in Saccharomyces cerevisiae , 2000, The Journal of cell biology.

[141]  Kim Nasmyth,et al.  Cleavage of Cohesin by the CD Clan Protease Separin Triggers Anaphase in Yeast , 2000, Cell.

[142]  K. Nasmyth,et al.  Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation , 2000, Nature Cell Biology.

[143]  John A. Tainer,et al.  Structural Biology of Rad50 ATPase ATP-Driven Conformational Control in DNA Double-Strand Break Repair and the ABC-ATPase Superfamily , 2000, Cell.

[144]  A. Strunnikov,et al.  The Condensin Complex Governs Chromosome Condensation and Mitotic Transmission of Rdna , 2000, The Journal of cell biology.

[145]  A. Lehmann,et al.  A novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNA repair protein , 2000, The EMBO journal.

[146]  K Nasmyth,et al.  Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. , 2000, Molecular cell.

[147]  H. Niki,et al.  Complex formation of MukB, MukE and MukF proteins involved in chromosome partitioning in Escherichia coli , 1999, The EMBO journal.

[148]  K. Nasmyth,et al.  Identification of Cohesin Association Sites at Centromeres and along Chromosome Arms , 1999, Cell.

[149]  M. Yanagida,et al.  Fission yeast condensin complex: essential roles of non-SMC subunits for condensation and Cdc2 phosphorylation of Cut3/SMC4. , 1999, Genes & development.

[150]  N. Cozzarelli,et al.  13S Condensin Actively Reconfigures DNA by Introducing Global Positive Writhe Implications for Chromosome Condensation , 1999, Cell.

[151]  Friedrich Lottspeich,et al.  Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1 , 1999, Nature.

[152]  C. Nusbaum,et al.  Dosage compensation proteins targeted to X chromosomes by a determinant of hermaphrodite fate. , 1999, Science.

[153]  D. Dorsett,et al.  Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes. , 1999, Genetics.

[154]  K. Nasmyth,et al.  Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. , 1999, Genes & development.

[155]  T. Hirano,et al.  SMC-mediated chromosome mechanics: a conserved scheme from bacteria to vertebrates? , 1999, Genes & development.

[156]  Kim Nasmyth,et al.  Cohesion between sister chromatids must be established during DNA replication , 1998, Current Biology.

[157]  J. Lieb,et al.  MIX-1: An Essential Component of the C. elegans Mitotic Machinery Executes X Chromosome Dosage Compensation , 1998, Cell.

[158]  V. Guacci,et al.  A Direct Link between Sister Chromatid Cohesion and Chromosome Condensation Revealed through the Analysis of MCD1 in S. cerevisiae , 1997, Cell.

[159]  K. Nasmyth,et al.  Cohesins: Chromosomal Proteins that Prevent Premature Separation of Sister Chromatids , 1997, Cell.

[160]  K. Nairz,et al.  mre11S--a yeast mutation that blocks double-strand-break processing and permits nonhomologous synapsis in meiosis. , 1997, Genes & development.

[161]  K. Kimura,et al.  ATP-Dependent Positive Supercoiling of DNA by 13S Condensin: A Biochemical Implication for Chromosome Condensation , 1997, Cell.

[162]  R. Kobayashi,et al.  Condensins, Chromosome Condensation Protein Complexes Containing XCAP-C, XCAP-E and a Xenopus Homolog of the Drosophila Barren Protein , 1997, Cell.

[163]  B. Meyer,et al.  SDC-3 coordinates the assembly of a dosage compensation complex on the nematode X chromosome. , 1997, Development.

[164]  H. Bellen,et al.  Chromatid Segregation at Anaphase Requires the barren Product, a Novel Chromosome-Associated Protein That Interacts with Topoisomerase II , 1996, Cell.

[165]  R. Birkenbihl,et al.  The rad21 Gene Product of Schizosaccharomyces pombe Is a Nuclear, Cell Cycle-regulated Phosphoprotein (*) , 1995, The Journal of Biological Chemistry.

[166]  D. Albertson,et al.  DPY-27: A chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome , 1994, Cell.

[167]  B. Meyer,et al.  The dpy-30 gene encodes an essential component of the Caenorhabditis elegans dosage compensation machinery. , 1994, Genetics.