Doping-Free Arsenene Heterostructure Metal-Oxide-Semiconductor Field Effect Transistors Enabled by Thickness Modulated Semiconductor to Metal Transition in Arsenene

[1]  Chunxiang Zhu,et al.  Efficient and reliable surface charge transfer doping of black phosphorus via atomic layer deposited MgO toward high performance complementary circuits. , 2018, Nanoscale.

[2]  Jiwon Chang Novel antimonene tunneling field-effect transistors using an abrupt transition from semiconductor to metal in monolayer and multilayer antimonene heterostructures. , 2018, Nanoscale.

[3]  Youyong Li,et al.  Sub-5 nm Monolayer Arsenene and Antimonene Transistors. , 2018, ACS applied materials & interfaces.

[4]  K. Zhou,et al.  A first-principles study on the adsorption of small molecules on antimonene: oxidation tendency and stability , 2018, 1803.07824.

[5]  R Martel,et al.  Synthesis of Antimonene on Germanium. , 2017, Nano letters.

[6]  Pu Huang,et al.  Many-body Effect, Carrier Mobility, and Device Performance of Hexagonal Arsenene and Antimonene , 2017 .

[7]  Chen Liu,et al.  Epitaxial Growth and Air‐Stability of Monolayer Antimonene on PdTe2 , 2017, Advanced materials.

[8]  Wenhui Wang,et al.  Two-dimensional antimonene single crystals grown by van der Waals epitaxy , 2016, Nature Communications.

[9]  S. Ciraci,et al.  Stability of single-layer and multilayer arsenene and their mechanical and electronic properties , 2016 .

[10]  G. Fiori,et al.  Performance of arsenene and antimonene double-gate MOSFETs from first principles , 2016, Nature Communications.

[11]  M. Alcamí,et al.  Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions , 2016, Advanced materials.

[12]  R. Wallace,et al.  Remote Plasma Oxidation and Atomic Layer Etching of MoS2. , 2016, ACS applied materials & interfaces.

[13]  Zhenhua Ni,et al.  Atomic-layer soft plasma etching of MoS2 , 2016, Scientific Reports.

[14]  Hao-Chung Kuo,et al.  Direct Synthesis and Practical Bandgap Estimation of Multilayer Arsenene Nanoribbons , 2016 .

[15]  J. Robertson,et al.  Engineering high charge transfer n-doping of graphene electrodes and its application to organic electronics. , 2015, Nanoscale.

[16]  Jiwon Chang Modeling of anisotropic two-dimensional materials monolayer HfS2 and phosphorene metal-oxide semiconductor field effect transistors , 2015 .

[17]  D. Tománek,et al.  Strain-induced metal-semiconductor transition in monolayers and bilayers of gray arsenic: A computational study , 2015 .

[18]  S. Karna,et al.  Atomically thin group v elemental films: theoretical investigations of antimonene allotropes. , 2015, ACS applied materials & interfaces.

[19]  H. Zeng,et al.  Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. , 2015, Angewandte Chemie.

[20]  Sean C. Smith,et al.  Structural and Electronic Properties of Layered Arsenic and Antimony Arsenide , 2015 .

[21]  Gautam Gupta,et al.  Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. , 2014, Nature materials.

[22]  Motohiko Ezawa,et al.  Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems , 2014, 1410.5166.

[23]  Jing Guo,et al.  Performance Limits Projection of Black Phosphorous Field-Effect Transistors , 2014, IEEE Electron Device Letters.

[24]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[25]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[26]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[27]  S. Banerjee,et al.  Atomistic simulation of the electronic states of adatoms in monolayer MoS2 , 2013, 1305.7162.

[28]  Jing Guo,et al.  Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. , 2013, Nano letters.

[29]  L. Register,et al.  Atomistic full-band simulations of monolayer MoS2 transistors , 2013, 1304.2990.

[30]  M. Fuhrer,et al.  Measurement of mobility in dual-gated MoS₂ transistors. , 2013, Nature nanotechnology.

[31]  K. Alam,et al.  Monolayer $\hbox{MoS}_{2}$ Transistors Beyond the Technology Road Map , 2012, IEEE Transactions on Electron Devices.

[32]  Jong-Hyun Ahn,et al.  Atomic layer etching of graphene for full graphene device fabrication , 2012 .

[33]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[34]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[35]  M. Luisier,et al.  Multiscale Metrology and Optimization of Ultra-Scaled InAs Quantum Well FETs , 2010, IEEE Transactions on Electron Devices.

[36]  M. Luisier,et al.  Performance analysis of ultra-scaled InAs HEMTs , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[37]  S. Lebègue,et al.  Electronic structure of two-dimensional crystals from ab-initio theory , 2009, 0901.0440.

[38]  M. Lundstrom,et al.  Performance Analysis of 60-nm Gate-Length III–V InGaAs HEMTs: Simulations Versus Experiments , 2008, IEEE Transactions on Electron Devices.

[39]  J. Brink,et al.  Doping graphene with metal contacts. , 2008, Physical review letters.

[40]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[41]  P. Ordejón,et al.  Density-functional method for nonequilibrium electron transport , 2001, cond-mat/0110650.

[42]  Jian Wang,et al.  Ab initio modeling of quantum transport properties of molecular electronic devices , 2001 .

[43]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[44]  S. Ciraci,et al.  Single-layer crystalline phases of antimony: Antimonenes , 2015 .

[45]  Dirk C. Mattfeld,et al.  A Computational Study , 1996 .