Schubert Classes in the Equivariant K-Theory and Equivariant Cohomology of the Grassmannian

We give positive formulas for the restriction of a Schubert Class to a T-fixed point in the equivariant K-theory and equivariant cohomology of the Grassmannian. Our formulas rely on a result of Kodiyalam-Raghavan and Kreiman-Lakshmibai, which gives an equivariant Grobner degeneration of a Schubert variety in the neighborhood of a T-fixed point of the Grassmannian.

[1]  Positivity in equivariant Schubert calculus , 1999, math/9908172.

[2]  H. H. Andersen,et al.  Representations of quantum groups at a p-th root of unity and of semisimple groups in characteristic p : independence of p , 1994 .

[3]  S. Billey,et al.  Kostant polynomials and the cohomology ring for G/B. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Sergey Fomin,et al.  Grothendieck polynomials and the Yang - Baxter equation , 1994 .

[5]  Flag Varieties and the Yang-Baxter Equation , 1996, q-alg/9607015.

[6]  Nantel Bergeron,et al.  A Combinatorial Construction of the Schubert Polynomials , 1992, J. Comb. Theory, Ser. A.

[7]  Sergey Fomin,et al.  The Yang-Baxter equation, symmetric functions, and Schubert polynomials , 1996, Discret. Math..

[8]  Nantel Bergeron,et al.  RC-Graphs and Schubert Polynomials , 1993, Exp. Math..

[9]  I. G. MacDonald,et al.  Notes on Schubert polynomials , 1991 .

[10]  Arun Ram,et al.  Affine Hecke algebras and the Schubert calculus , 2004, Eur. J. Comb..

[11]  Local properties of Richardson varieties in the Grassmannian via a bounded Robinson-Schensted-Knuth correspondence , 2005, math/0511695.

[12]  Hilbert functions of points on Schubert varieties in the Grassmannian , 2002, math/0206121.

[13]  Cristian Lenart,et al.  A Unified Approach to Combinatorial Formulas for Schubert Polynomials , 2004 .

[14]  Hiroshi Naruse,et al.  Excited Young diagrams and equivariant Schubert calculus , 2007 .

[15]  Alain Lascoux,et al.  Anneau de Grothendieck de la variété de drapeaux , 1990 .

[16]  T. Ikeda Schubert classes in the equivariant cohomology of the Lagrangian Grassmannian , 2005, math/0508110.

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  Ezra Miller,et al.  Gröbner geometry of vertex decompositions and of flagged tableaux , 2005, math/0502144.

[19]  V. Kreiman Schubert Classes in the Equivariant K-Theory and Equivariant Cohomology of the Lagrangian Grassmannian , 2006 .

[20]  Terence Tao,et al.  Puzzles and (equivariant) cohomology of Grassmannians , 2001, math/0112150.

[21]  Hilbert functions of points on Schubert varieties in the symplectic Grassmannian , 2004, math/0409338.

[22]  On multiplicities of points on Schubert varieties in Grassmannians. , 2000, math/0011129.

[23]  Multiplicities of Points on Schubert Varieties in Grassmannians , 1999, math/9901057.

[24]  Peter R. W. McNamara Factorial Grothendieck Polynomials , 2006, Electron. J. Comb..

[25]  On Multiplicities of Points on Schubert Varieties in Graßmannians II , 2001, math/0112285.

[26]  Bruce E. Sagan,et al.  A Littlewood-Richardson rule for factorial Schur functions , 1997 .

[27]  Anders Skovsted Buch A Littlewood-Richardson rule for theK-theory of Grassmannians , 2000 .

[28]  Equivariant Giambelli and determinantal restriction formulas for the Grassmannian , 2005, math/0506015.

[29]  Ezra Miller,et al.  Gröbner geometry of Schubert polynomials , 2001 .

[30]  Grothendieck polynomials via permutation patterns and chains in the Bruhat order , 2004, math/0405539.