Modeling and compensating the dynamic hysteresis of piezoelectric actuators via a modified rate-dependent Prandtl-Ishlinskii model

This paper presents a modified rate-dependent Prandtl–Ishlinskii (MRPI) model for the description and compensation of the rate-dependent asymmetric hysteresis in piezoelectric actuators. Different from the commonly used approach with dynamic weights or dynamic thresholds, the MRPI model is formulated by employing dynamic envelope functions into the play operators, while the weights and thresholds of the play operators are still static. By this way, the developed MRPI model has a relatively simple mathematic format with fewer parameters and easier parameter identification process. The benefit for the developed MRPI model also lies in the fact that the existing control approaches can be directly adopted with the MRPI model for hysteresis compensation in real-time applications. To validate the proposed model, an open-loop tracking controller and a closed-loop tracking controller are developed based on a dynamic hysteresis compensator, which is directly constructed with the MRPI model. Comparative experiments are carried out on a piezo-actuated nanopositioning stage. The experimental results demonstrate the effectiveness and superiority of the controllers based on the developed MRPI model compared to the controllers based on the rate-independent P–I model and the rate-dependent P–I model with dynamic weighting functions.

[1]  Micky Rakotondrabe,et al.  Bouc–Wen Modeling and Inverse Multiplicative Structure to Compensate Hysteresis Nonlinearity in Piezoelectric Actuators , 2011, IEEE Transactions on Automation Science and Engineering.

[2]  Xuedong Chen,et al.  Inverse compensation for hysteresis in piezoelectric actuator using an asymmetric rate-dependent model. , 2013, The Review of scientific instruments.

[3]  Li-Min Zhu,et al.  A Modified Prandtl-Ishlinskii Model for Rate-dependent Hysteresis Nonlinearity Using mth-power Velocity Damping Mechanism , 2014 .

[4]  Wei Tech Ang,et al.  Feedforward Controller With Inverse Rate-Dependent Model for Piezoelectric Actuators in Trajectory-Tracking Applications , 2007, IEEE/ASME Transactions on Mechatronics.

[5]  J.A. De Abreu-Garcia,et al.  Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model , 2005, IEEE/ASME Transactions on Mechatronics.

[6]  Klaus Kuhnen,et al.  Modeling, Identification and Compensation of Complex Hysteretic Nonlinearities: A Modified Prandtl - Ishlinskii Approach , 2003, Eur. J. Control.

[7]  D. Croft,et al.  Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application , 2001 .

[8]  Qingsong Xu,et al.  Adaptive Discrete-Time Sliding Mode Impedance Control of a Piezoelectric Microgripper , 2013, IEEE Transactions on Robotics.

[9]  Hui Chen,et al.  A neural networks based model for rate-dependent hysteresis for piezoceramic actuators , 2008 .

[10]  Qingsong Xu,et al.  Dahl Model-Based Hysteresis Compensation and Precise Positioning Control of an XY Parallel Micromanipulator With Piezoelectric Actuation , 2010 .

[11]  S O R Moheimani,et al.  Invited review article: high-speed flexure-guided nanopositioning: mechanical design and control issues. , 2012, The Review of scientific instruments.

[12]  Yangmin Li,et al.  Modeling and High Dynamic Compensating the Rate-Dependent Hysteresis of Piezoelectric Actuators via a Novel Modified Inverse Preisach Model , 2013, IEEE Transactions on Control Systems Technology.

[13]  Hartmut Janocha,et al.  Real-time compensation of hysteresis and creep in piezoelectric actuators , 2000 .

[14]  Chun-Yi Su,et al.  A note on the properties of a generalized Prandtl–Ishlinskii model , 2011 .

[15]  Chun-Yi Su,et al.  Development of the rate-dependent Prandtl–Ishlinskii model for smart actuators , 2008 .

[16]  Li-Min Zhu,et al.  Design, analysis and testing of a parallel-kinematic high-bandwidth XY nanopositioning stage. , 2013, The Review of scientific instruments.

[17]  Li-Min Zhu,et al.  Parameter identification of the generalized Prandtl–Ishlinskii model for piezoelectric actuators using modified particle swarm optimization , 2013 .

[18]  Meng-Shiun Tsai,et al.  Robust Tracking Control of a Piezoactuator Using a New Approximate Hysteresis Model , 2003 .

[19]  M. Al Janaideh,et al.  Inverse Rate-Dependent Prandtl–Ishlinskii Model for Feedforward Compensation of Hysteresis in a Piezomicropositioning Actuator , 2013, IEEE/ASME Transactions on Mechatronics.

[20]  Guangjun Liu,et al.  Hysteresis identification and compensation using a genetic algorithm with adaptive search space , 2007 .

[21]  Kam K. Leang,et al.  Dual-stage repetitive control with Prandtl-Ishlinskii hysteresis inversion for piezo-based nanopositioning , 2012 .

[22]  H. Hu,et al.  Enhancement of tracking ability in piezoceramic actuators subject to dynamic excitation conditions , 2005, IEEE/ASME Transactions on Mechatronics.

[23]  Dawei Zhang,et al.  Design issues in a decoupled XY stage: Static and dynamics modeling, hysteresis compensation, and tracking control , 2013 .

[24]  Peiyue Li,et al.  A simple fuzzy system for modelling of both rate-independent and rate-dependent hysteresis in piezoelectric actuators , 2013 .

[25]  Qingsong Xu,et al.  Rate-Dependent Hysteresis Modeling and Control of a Piezostage Using Online Support Vector Machine and Relevance Vector Machine , 2012, IEEE Transactions on Industrial Electronics.

[26]  Yangmin Li,et al.  Dynamic compensation and H ∞ control for piezoelectric actuators based on the inverse Bouc-Wen model , 2014 .

[27]  U-Xuan Tan,et al.  Tracking Control of Hysteretic Piezoelectric Actuator using Adaptive Rate-Dependent Controller. , 2009, Sensors and actuators. A, Physical.

[28]  Qingsong Xu,et al.  Identification and Compensation of Piezoelectric Hysteresis Without Modeling Hysteresis Inverse , 2013, IEEE Transactions on Industrial Electronics.

[29]  Li-Min Zhu,et al.  Modeling and Compensation of Asymmetric Hysteresis Nonlinearity for Piezoceramic Actuators With a Modified Prandtl–Ishlinskii Model , 2014, IEEE Transactions on Industrial Electronics.

[30]  R. Ben Mrad,et al.  A model for voltage-to-displacement dynamics in piezoceramic actuators subject to dynamic-voltage excitations , 2002 .

[31]  Qingsong Xu,et al.  A Novel Piezoactuated XY Stage With Parallel, Decoupled, and Stacked Flexure Structure for Micro-/Nanopositioning , 2011, IEEE Transactions on Industrial Electronics.

[32]  Limin Zhu,et al.  Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii model. , 2012, The Review of scientific instruments.

[33]  Limin Zhu,et al.  High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model. , 2010, The Review of scientific instruments.

[34]  Jacek Przybylski Non-linear vibrations of a beam with a pair of piezoceramic actuators , 2009 .

[35]  David Zhang,et al.  Dynamic modelling of a flexure-based mechanism for ultra-precision grinding operation , 2011 .

[36]  Ping Ge,et al.  Tracking control of a piezoceramic actuator , 1996, IEEE Trans. Control. Syst. Technol..

[37]  Tianyou Chai,et al.  Compensation of Hysteresis Nonlinearity in Magnetostrictive Actuators With Inverse Multiplicative Structure for Preisach Model , 2014, IEEE Transactions on Automation Science and Engineering.