On normal and skew-Hermitian splitting iteration methods for large sparse continuous Sylvester equations

This paper is concerned with some generalizations of the Hermitian and skew-Hermitian splitting (HSS) iteration for solving continuous Sylvester equations. The main contents we will introduce are the normal and skew-Hermitian splitting (NSS) iteration methods for the continuous Sylvester equations. It is shown that the new schemes can outperform the standard HSS method in some situations. Theoretical analysis shows that the NSS methods converge unconditionally to the exact solution of the continuous Sylvester equations. Moreover, we derive the upper bound of the contraction factor of the NSS iterations. Numerical experiments further show the effectiveness of our new methods.

[1]  Jia Liu,et al.  An Efficient Solver for the Incompressible Navier-Stokes Equations in Rotation Form , 2007, SIAM J. Sci. Comput..

[2]  H. Nicholson,et al.  On the structure of balanced and other principal representations of SISO systems , 1983 .

[3]  Andrew J. Wathen,et al.  Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations , 2002, Numerische Mathematik.

[4]  Michael K. Ng,et al.  Preconditioned Iterative Methods for Weighted Toeplitz Least Squares Problems , 2005, SIAM J. Matrix Anal. Appl..

[5]  Bing Zheng,et al.  On semi-convergence of parameterized Uzawa methods for singular saddle point problems☆ , 2009 .

[6]  Z. Bai ON HERMITIAN AND SKEW-HERMITIAN SPLITTING ITERATION METHODS FOR CONTINUOUS SYLVESTER EQUATIONS * , 2010 .

[7]  Michael K. Ng,et al.  Preconditioners for nonsymmetric block toeplitz-like-plus-diagonal linear systems , 2003, Numerische Mathematik.

[8]  Gene H. Golub,et al.  Preconditioned HSS methods for the solution of non-Hermitian positive definite linear systems and applications to the discrete convection-diffusion equation , 2005, Numerische Mathematik.

[9]  Thilo Penzl Algorithms for model reduction of large dynamical systems , 2006 .

[10]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[11]  I. Petersen Disturbance attenuation and H^{∞} optimization: A design method based on the algebraic Riccati equation , 1987 .

[12]  Raymond H. Chan,et al.  On sinc discretization and banded preconditioning for linear third‐order ordinary differential equations , 2011, Numer. Linear Algebra Appl..

[13]  M. Benzi,et al.  A dimensional split preconditioner for Stokes and linearized Navier-Stokes equations , 2011 .

[14]  Basil G. Mertzios,et al.  Analysis of bilinear systems using Walsh functions , 1990 .

[15]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[16]  Sujit Kumar Mitra,et al.  Hermitian and Nonnegative Definite Solutions of Linear Matrix Equations , 1976 .

[17]  Michele Benzi,et al.  Spectral Properties of the Hermitian and Skew-Hermitian Splitting Preconditioner for Saddle Point Problems , 2005, SIAM J. Matrix Anal. Appl..

[18]  Gene H. Golub,et al.  Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices , 2007, Math. Comput..

[19]  Lin Dai,et al.  On Hermitian and skew-Hermitian splitting iteration methods for the linear matrix equation AXB=C , 2013, Comput. Math. Appl..

[20]  E. Wachspress Iterative solution of the Lyapunov matrix equation , 1988 .

[21]  Gene H. Golub,et al.  Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems , 2007 .

[22]  Zhong-Zhi Bai,et al.  Optimal parameters in the HSS‐like methods for saddle‐point problems , 2009, Numer. Linear Algebra Appl..

[23]  L. Reichel,et al.  Krylov-subspace methods for the Sylvester equation , 1992 .

[24]  Zhong-zhi,et al.  A SHIFT-SPLITTING PRECONDITIONER FOR NON-HERMITIAN POSITIVE DEFINITE MATRICES , 2006 .

[25]  L. Reichel,et al.  A generalized ADI iterative method , 1993 .

[26]  R. A. Smith Matrix Equation $XA + BX = C$ , 1968 .

[27]  Xiang Wang,et al.  On positive-definite and skew-Hermitian splitting iteration methods for continuous Sylvester equation AX-XB=C , 2013, Comput. Math. Appl..

[28]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[29]  Zhong-Zhi Bai,et al.  On Preconditioned Iterative Methods for Certain Time-Dependent Partial Differential Equations , 2009, SIAM J. Numer. Anal..

[30]  Cristina Tablino Possio,et al.  Preconditioned Hermitian and Skew-Hermitian Splitting Method for Finite Element Approximations of Convection-Diffusion Equations , 2009, SIAM J. Matrix Anal. Appl..

[31]  Michele Benzi,et al.  New multigrid smoothers for the Oseen problem , 2010, Numer. Linear Algebra Appl..

[32]  Guoxiang Gu,et al.  Disturbance attenuation and H(infinity) optimization with linear output feedback control , 1994 .

[33]  G. Golub,et al.  Optimization of the Hermitian and Skew-Hermitian Splitting Iteration for Saddle-Point Problems , 2003 .

[34]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[35]  Danny C. Sorensen,et al.  The Sylvester equation and approximate balanced reduction , 2002 .

[36]  Gene H. Golub,et al.  Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices , 2006, SIAM J. Sci. Comput..

[37]  Michael K. Ng,et al.  A hybrid preconditioner of banded matrix approximation and alternating direction implicit iteration for symmetric Sinc-Galerkin linear systems , 2003 .

[38]  David Young,et al.  Alternating Direction Implicit Methods , 1962, Adv. Comput..

[39]  Lothar Reichel,et al.  Application of ADI Iterative Methods to the Restoration of Noisy Images , 1996, SIAM J. Matrix Anal. Appl..

[40]  Peter Lancaster,et al.  Linear matrix equations from an inverse problem of vibration theory , 1996 .

[41]  Michael K. Ng,et al.  On Preconditioned Iterative Methods for Burgers Equations , 2007, SIAM J. Sci. Comput..

[42]  Yu-Mei Huang,et al.  A practical formula for computing optimal parameters in the HSS iteration methods , 2014, J. Comput. Appl. Math..

[43]  Gene H. Golub,et al.  On successive‐overrelaxation acceleration of the Hermitian and skew‐Hermitian splitting iterations , 2007, Numer. Linear Algebra Appl..

[44]  Zhong-Zhi Bai,et al.  On semi-convergence of Hermitian and skew-Hermitian splitting methods for singular linear systems , 2010, Computing.

[45]  Gene H. Golub,et al.  Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.

[46]  M. Ilic,et al.  New approaches to voltage monitoring and control , 1989, IEEE Control Systems Magazine.

[47]  Gene H. Golub,et al.  A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..

[48]  A. Schaft L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences 218 , 1996 .

[49]  Eugene L. Wachspress,et al.  Alternating direction implicit iteration for systems with complex spectra , 1991 .