Evolution of Matter and Energy

Maybe during our time, at the end of the twentieth century or at the beginning of the next century, the old dream of natural sciences will become reality—the theory which unifies all phenomena, the natural and the artificial, the smallest and the largest, the simplest and the most complex, the past and the future, the here and the elsewhere. The possibility of the emergence of the theory of everything seems not to be as remote as before, even if some theoretical physicists are too optimistic. Not only on the grounds of pure symmetry, the number of sceptical theoreticians who do not believe such “theories of everything” equals the number of enthusiasts. The “theory of everything”, TOE, is probably approaching. There exist different ways of achieving the TOE. One of them, which seems to have good prospects is the theory of “superstrings”. This theory proposes that all particles—real particles, the ‘bricks of the Nature’ (fermions), and also field particles, the carriers of forces,being ‘the mortar of nature’ (bosons)— are not pointlike but are stringlike. The superstrings theory not only describes all known forces (including gravitation), but gives an intimate coupling between forces, particles, space and time [1, 2, 3].

[1]  F. R. Krueger,et al.  The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1 , 1987, Nature.

[2]  A. Issar Fossil Water under the Sinai-Negev Peninsula , 1985 .

[3]  World coal resources , 1979 .

[4]  A. Shimony The Reality of the Quantum World. , 1988 .

[5]  Juri Matisoo,et al.  The Superconducting Computer , 1980 .

[6]  M. Budyko The Earth's climate, past and future , 1982 .

[7]  D. Mitchell,et al.  Evidence for Chain Molecules Enriched in Carbon, Hydrogen, and Oxygen in Comet Halley , 1987, Science.

[8]  R. Revelle Food and population. , 1974, Scientific American.

[9]  R. Arnone,et al.  Satellite detection of transient enhanced primary production in the western Mediterranean Sea , 1988, Nature.

[10]  C. Covey The earth's orbit and the ice ages. , 1984 .

[11]  A. Burrows The Birth of Neutron Stars and Black Holes , 1987 .

[12]  J. D. Williams,et al.  The Compleat Strategyst , 1955 .

[13]  Stephen H. Schneider,et al.  The Coevolution Of Climate And Life , 1984 .

[14]  G. North,et al.  Abrupt Climate Change and Extinction Events in Earth History , 1988, Science.

[15]  H. Bethe,et al.  How a supernova explodes , 1985 .

[16]  Robert M. May,et al.  How Many Species Are There on Earth? , 1988, Science.

[17]  A. Dressler The large-scale streaming of galaxies , 1987 .

[18]  I. Prigogine,et al.  Entropy and cosmology , 1987, Nature.

[19]  Eric D. Larson,et al.  Beyond the Era of Materials , 1986 .

[20]  T. Platt,et al.  Oceanic Primary Production: Estimation by Remote Sensing at Local and Regional Scales , 1988, Science.

[21]  Albert L. Huebner,et al.  The Coevolution of Climate and Life by Stephen H. Schneider and Randi Londer (Sierra Club Books [San Francisco]; xii + 563 pp.; $25.00) , 1985 .

[22]  C. Hall,et al.  Tropical Forests and the Global Carbon Cycle , 1988, Science.

[23]  R. Nance,et al.  The Supercontinent Cycle , 1988, Encyclopedia of Geology.

[24]  C. Chyba,et al.  The cometary contribution to the oceans of primitive Earth , 1987, Nature.

[25]  Carl Sagan,et al.  Anthropogenic Albedo Changes and the Earth's Climate , 1979, Science.

[26]  Recent progress and future plans on the search for extraterrestrial intelligence , 1985, Nature.

[27]  M. Bailey,et al.  The Origin of Comets , 1990 .

[28]  J. Bally Interstellar Molecular Clouds , 1986, Science.

[29]  M. Schidlowski A 3,800-million-year isotopic record of life from carbon in sedimentary rocks , 1988, Nature.

[30]  R. Gehrz,et al.  The Formation of Stellar Systems from Interstellar Molecular Clouds , 1984, Science.

[31]  Dennis Gabor,et al.  Beyond the age of waste. , 1978 .

[32]  H. M. TOMLIN Hydrophobia—A Further Precaution , 1886, Nature.

[33]  John Pastor,et al.  Response of northern forests to CO2-induced climate change , 1988, Nature.

[34]  PHYSICS OF OUR DAYS: Physical laws and the numerical values of fundamental constants , 1980 .

[35]  L. W. Alvarez,et al.  Mass extinctions caused by large bolide impacts. , 1987, Physics today.

[36]  W. Fowler The quest for the origin of the elements. , 1984 .

[37]  N. Keyfitz The Population of China , 1984 .

[38]  S. Stern,et al.  The influence of supernovae and passing stars on comets in the Oort cloud , 1988, Nature.

[39]  J. Devine,et al.  Late Cretaceous and paroxysmal Cretaceous/Tertiary extinctions , 1987, Nature.

[40]  A M Weinberg,et al.  The age of substitutability. , 1976, Science.

[41]  M. Budyko,et al.  The Evolution of the Biosphere , 1986 .

[42]  R A Finke,et al.  Mental imagery and the visual system. , 1986, Scientific American.

[43]  R. Siever The Dynamic Earth. , 1983 .

[44]  Glenn Q. Lefler Association of Physics Teachers , 1955 .

[45]  M. Eigen,et al.  Stufen zum Leben , 1986 .

[46]  Stephen H. Schneider,et al.  Climate modeling , 1987 .

[47]  I. Gilmour,et al.  Global fire at the Cretaceous– Tertiary boundary , 1988, Nature.

[48]  B. Burchfiel,et al.  The Continental Crust. , 1983 .

[49]  V. Smil China's Food , 1985 .

[50]  RALPH A. ALPHER,et al.  Evolution of the Universe , 1948, Nature.

[51]  D. Mckenzie The earth's mantle , 1983 .

[52]  N. Vietmeyer Lesser-Known Plants of Potential Use in Agriculture and Forestry , 1986, Science.

[53]  T. Penney,et al.  Power from the Sea , 1928, Science.

[54]  S. Woosley,et al.  Nickel, argon and cobalt in the infrared spectrum of SN1987A: the core becomes visible , 1988, Nature.

[55]  S. Chandrasekhar On Stars, Their Evolution and Their Stability , 1984 .

[56]  N F Jensen,et al.  Limits to growth in world food production. , 1978, Science.

[57]  S. Stanley Earth and life through time , 1986 .

[58]  The long-term future of the universe , 1979 .

[59]  Vaclav Smil,et al.  World Resources 1986 , 1986 .

[60]  N. Scoville,et al.  Molecular clouds, star formation and galactic structure , 1984 .

[61]  Grant J. Mathews,et al.  The cosmic synthesis of lithium, beryllium and boron. , 1987 .

[62]  F. Dyson Time without end: Physics and biology in an open universe , 1979 .

[63]  J. Kasting,et al.  How climate evolved on the terrestrial planets. , 1988, Scientific American.

[64]  G. Vidal The oldest eukaryotic cells. , 1984, Scientific American.

[65]  C. Meyer Ore Metals Through Geologic History , 1985, Science.

[66]  C. Quigg Elementary Particles and Forces. , 1985 .

[67]  The Formation of Galaxies , 1983 .

[68]  A. Hallam End-Cretaceous Mass Extinction Event: Argument for Terrestrial Causation , 1987, Science.

[69]  E. R. Oxburgh,et al.  Helium Loss, Tectonics, and the Terrestrial Heat Budget , 1987, Science.

[70]  J. L. Gould,et al.  Learning by Instinct , 1987 .

[71]  F. Harold The Vital Force: A Study of Bioenergetics , 1986 .

[72]  Stephen Jay Gould,et al.  A view of life , 1981 .

[73]  J. Peixoto,et al.  Physics of climate , 1984 .

[74]  Wolf Häfele,et al.  Energy in a finite world , 1981 .

[75]  C. Hinman,et al.  Potential New Crops , 1986 .

[76]  B. Lazar,et al.  Evolution of the atmosphere and oceans , 1986, Nature.

[77]  A. Boss Collapse and formation of stars , 1985 .