Adaptive Global Optimization Based on a Block-Recursive Dimensionality Reduction Scheme

[1]  J D Pinter,et al.  Global Optimization in Action—Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications , 2010 .

[2]  Yu. G. Evtushenko,et al.  Parallelization of the global extremum searching process , 2007 .

[3]  Vladimir A. Grishagin,et al.  Comparative efficiency of dimensionality reduction schemes in global optimization , 2016 .

[4]  Y. Evtushenko Numerical methods for finding global extrema (Case of a non-uniform mesh) , 1971 .

[5]  Y. Sergeyev,et al.  Parallel Asynchronous Global Search and the Nested Optimization Scheme , 2001 .

[6]  Vladimir A. Grishagin,et al.  Parallel Characteristical Algorithms for Solving Problems of Global Optimization , 1997, J. Glob. Optim..

[7]  Yaroslav D. Sergeyev,et al.  Algorithm 829: Software for generation of classes of test functions with known local and global minima for global optimization , 2003, TOMS.

[8]  V. U. Malkova,et al.  Parallel global optimization of functions of several variables , 2009 .

[9]  Dmitri E. Kvasov,et al.  Metaheuristic vs. deterministic global optimization algorithms: The univariate case , 2018, Appl. Math. Comput..

[10]  Y. D. Sergeyev,et al.  Global Optimization with Non-Convex Constraints - Sequential and Parallel Algorithms (Nonconvex Optimization and its Applications Volume 45) (Nonconvex Optimization and Its Applications) , 2000 .

[11]  Vladimir A. Grishagin,et al.  Parallel Dimensionality Reduction for Multiextremal Optimization Problems , 2019, PaCT.

[12]  S. A. Piyavskii An algorithm for finding the absolute extremum of a function , 1972 .

[13]  Julius Zilinskas,et al.  Advantages of simplicial partitioning for Lipschitz optimization problems with linear constraints , 2014, Optimization Letters.

[14]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[15]  Ya D Sergeyev,et al.  On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget , 2018, Scientific Reports.

[16]  Vladimir A. Grishagin,et al.  Adaptive nested optimization scheme for multidimensional global search , 2016, J. Glob. Optim..

[17]  Vladimir A. Grishagin,et al.  Convergence conditions and numerical comparison of global optimization methods based on dimensionality reduction schemes , 2018, Appl. Math. Comput..

[18]  Vladislav Sovrasov,et al.  Comparison of Several Stochastic and Deterministic Derivative-Free Global Optimization Algorithms , 2019, MOTOR.

[19]  Yaroslav D. Sergeyev,et al.  Lipschitz global optimization methods in control problems , 2013, Autom. Remote. Control..

[20]  Ilya Lebedev,et al.  Solving Multidimensional Global Optimization Problems Using Graphics Accelerators , 2016 .

[21]  Vladimir A. Grishagin,et al.  Local Tuning in Nested Scheme of Global Optimization , 2015, ICCS.

[22]  B. Shubert A Sequential Method Seeking the Global Maximum of a Function , 1972 .

[23]  Julius Zilinskas,et al.  Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of Lipschitz bounds , 2010, Optim. Lett..

[24]  Mikhail Posypkin,et al.  A deterministic approach to global box-constrained optimization , 2012, Optimization Letters.

[25]  R. Strongin,et al.  A method for solving multi-extremal problems with non-convex constraints, that uses a priori information about estimates of the optimum , 1988 .

[26]  Julius Žilinskas,et al.  Branch and bound with simplicial partitions for global optimization , 2008 .