Maximin Latin Hypercube Designs in Two Dimensions
暂无分享,去创建一个
[1] M. E. Johnson,et al. Minimax and maximin distance designs , 1990 .
[2] Rex K. Kincaid,et al. Approximate Solutions of Continuous Dispersion Problems , 2005, Ann. Oper. Res..
[3] Dick den Hertog,et al. Optimizing color picture tubes by high-cost nonlinear programming , 2002, Eur. J. Oper. Res..
[4] Ken R. McNaught,et al. A comparison of experimental designs in the development of a neural network simulation metamodel , 2004, Simul. Model. Pract. Theory.
[5] Janis Auzins,et al. Response surface method for solution of structural identification problems , 2004 .
[6] Marco Locatelli,et al. Packing equal circles in a square: a deterministic global optimization approach , 2002, Discret. Appl. Math..
[7] A. J. Booker,et al. A rigorous framework for optimization of expensive functions by surrogates , 1998 .
[8] Dick den Hertog,et al. Constrained Maximin Designs for Computer Experiments , 2003, Technometrics.
[9] Tibor Csendes,et al. A New Verified Optimization Technique for the "Packing Circles in a Unit Square" Problems , 2005, SIAM J. Optim..
[10] Patric R. J. Östergård,et al. More Optimal Packings of Equal Circles in a Square , 1999, Discret. Comput. Geom..
[11] Jerome Sacks,et al. Designs for Computer Experiments , 1989 .
[12] T. J. Mitchell,et al. Exploratory designs for computational experiments , 1995 .
[13] Tibor Csendes,et al. Packing Equal Circles in a Square II. — New Results for up to 100 Circles Using the TAMSASS-PECS Algorithm , 2001 .
[14] Donald R. Jones,et al. Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..
[15] Raymond H. Myers,et al. Response Surface Methodology--Current Status and Future Directions , 1999 .
[16] N. Oler. A Finite Packing Problem , 1961, Canadian Mathematical Bulletin.