Output field-quadrature measurements and squeezing in ultrastrong cavity-QED

We study the squeezing of output quadratures of an electro-magnetic field escaping from a resonator coupled to a general quantum system with arbitrary interaction strengths. The generalized theoretical analysis of output squeezing proposed here is valid for all the interaction regimes of cavity-quantum electrodynamics: from the weak to the strong, ultrastrong, and deep coupling regimes. For coupling rates comparable or larger then the cavity resonance frequency, the standard input-output theory for optical cavities fails to calculate the correct output field-quadratures and predicts a non-negligible amount of output squeezing, even if the system is in its ground state. Here we show that, for arbitrary interactions and cavity-embedded quantum systems, no squeezing can be found in the output-field quadratures if the system is in its ground state. We also apply the proposed theoretical approach to study the output squeezing produced by: (i) an artificial two-level atom embedded in a coherently-excited cavity; and (ii) a cascade-type three-level system interacting with a cavity field mode. In the latter case the output squeezing arises from the virtual photons of the atom-cavity dressed states. This work extends the possibility of predicting and analyzing continuous-variable optical quantum-state tomography when optical resonators interact very strongly with other quantum systems.

[1]  M. Beck,et al.  Ultrastrong Coupling of the Cyclotron Transition of a 2D Electron Gas to a THz Metamaterial , 2011, Science.

[2]  M. Leib,et al.  Photon blockade in the ultrastrong coupling regime. , 2012, Physical review letters.

[3]  D. Walls,et al.  Reduced Quantum Fluctuations in Resonance Fluorescence , 1981 .

[4]  M. Mariantoni,et al.  Planck spectroscopy and quantum noise of microwave beam splitters. , 2010, Physical review letters.

[5]  C. Sirtori,et al.  Ultrastrong light-matter coupling regime with polariton dots. , 2010, Physical review letters.

[6]  S. Maier,et al.  Ultrastrongly Coupled Exciton–Polaritons in Metal‐Clad Organic Semiconductor Microcavities , 2013 .

[7]  L Martin-Moreno,et al.  Scattering in the ultrastrong regime: nonlinear optics with one photon. , 2014, Physical review letters.

[8]  P. Drummond,et al.  Squeezing with nonlinear optics , 2004 .

[9]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[10]  E Solano,et al.  Observation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. , 2010, Physical review letters.

[11]  Jeff F. Young,et al.  Controlled generation of squeezed states of microwave radiation in a superconducting resonant circuit. , 2008, Physical review letters.

[12]  Milburn,et al.  Quantum theory of field-quadrature measurements. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[13]  R. Saija,et al.  Ultrastrong coupling of plasmons and excitons in a nanoshell. , 2014, ACS nano.

[14]  I. Rabi Space Quantization in a Gyrating Magnetic Field , 1937 .

[15]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[16]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[17]  E. Solano,et al.  Circuit quantum electrodynamics in the ultrastrong-coupling regime , 2010 .

[18]  C. K. Law,et al.  Photon emission via vacuum-dressed intermediate states under ultrastrong coupling , 2013, 1312.7612.

[19]  Lian-Ao Wu,et al.  Quantum circuits for amplification of Kerr nonlinearity via quadrature squeezing , 2012, Journal of Physics B: Atomic, Molecular and Optical Physics.

[20]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[21]  Karsten Danzmann,et al.  Observation of squeezed light with 10-dB quantum-noise reduction. , 2007, Physical review letters.

[22]  Salvatore Savasta,et al.  Switching on and off of ultrastrong light-matter interaction: Photon statistics of quantum vacuum radiation , 2013 .

[23]  A. Ridolfo,et al.  Vacuum-induced symmetry breaking in a superconducting quantum circuit , 2014, 1406.5119.

[24]  A. Lvovsky,et al.  Continuous-variable optical quantum-state tomography , 2009 .

[25]  J. Gambetta,et al.  Dissipation and ultrastrong coupling in circuit QED , 2011, 1107.3990.

[26]  R. Glauber,et al.  Quantum optics of dielectric media. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[27]  C. Gardiner,et al.  Squeezing of intracavity and traveling-wave light fields produced in parametric amplification , 1984 .

[28]  David J. Richardson,et al.  All-optical phase and amplitude regenerator for next-generation telecommunications systems , 2010 .

[29]  J. Fink,et al.  Experimental state tomography of itinerant single microwave photons. , 2011, Physical review letters.

[30]  S. Filipp,et al.  Observation of two-mode squeezing in the microwave frequency domain. , 2011, Physical review letters.

[31]  Proposed Realization of the Dicke-Model Quantum Phase Transition in an Optical Cavity QED System , 2006, quant-ph/0607115.

[32]  Jack Hansom,et al.  Quadrature squeezed photons from a two-level system , 2015, Nature.

[33]  A. Pourkabirian,et al.  Observation of the dynamical Casimir effect in a superconducting circuit , 2011, Nature.

[34]  I. Carusotto,et al.  Quantum vacuum radiation spectra from a semiconductor microcavity with a time-modulated vacuum Rabi frequency. , 2006, Physical review letters.

[35]  F. Nori,et al.  Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states , 2009, 0912.4888.

[36]  Franco Nori,et al.  Multiphoton quantum Rabi oscillations in ultrastrong cavity QED , 2015, 1509.06102.

[37]  A. Ridolfo,et al.  All optical switch of vacuum Rabi oscillations: the ultrafast quantum eraser. , 2010, Physical review letters.

[38]  Mattias Beck,et al.  Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells. , 2011, Physical review letters.

[39]  F. Nori,et al.  Dynamical Casimir effect in superconducting microwave circuits , 2010, 1007.1058.

[40]  Orozco,et al.  Squeezed-state generation by the normal modes of a coupled system. , 1987, Physical review letters.

[41]  I. I. Rabi,et al.  On the Process of Space Quantization , 1936 .

[42]  Carmichael Photon antibunching and squeezing for a single atom in a resonant cavity. , 1985, Physical review letters.

[43]  T. Ogawa,et al.  Recipe for the Hamiltonian of system-environment coupling applicable to the ultrastrong-light-matter-interaction regime , 2013, 1306.2099.

[44]  M. Hartmann,et al.  Nonclassical radiation from thermal cavities in the ultrastrong coupling regime. , 2012, Physical review letters.

[45]  E Knill,et al.  Quantum state tomography of an itinerant squeezed microwave field. , 2010, Physical review letters.

[46]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[47]  G. C. Hilton,et al.  Amplification and squeezing of quantum noise with a tunable Josephson metamaterial , 2008, 0806.0659.

[48]  G. Lerario,et al.  Exploring Light–Matter Interaction Phenomena under Ultrastrong Coupling Regime , 2014 .

[49]  Alexandre Blais,et al.  Antibunching of microwave-frequency photons observed in correlation measurements using linear detectors , 2011 .

[50]  Hang Zheng,et al.  A qubit strongly coupled to a resonant cavity: asymmetry of the spontaneous emission spectrum beyond the rotating wave approximation , 2010, 1009.4366.

[51]  M. S. Zubairy,et al.  Squeezed states in the Jaynes-Cummings model , 1982 .

[52]  F. Nori,et al.  Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits , 2011, 1103.0835.

[53]  Franco Nori,et al.  Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. , 2005, Physical review letters.

[54]  C. K. Law,et al.  Three-photon resonance and adiabatic passage in the large-detuning Rabi model , 2015 .

[55]  E. D. Valle,et al.  Photon correlations from ultrastrong optical nonlinearities , 2013, 1307.5181.

[56]  M. Hartmann,et al.  Spontaneous conversion from virtual to real photons in the ultrastrong-coupling regime. , 2012, Physical review letters.

[57]  Franco Nori,et al.  Dynamics and quantum Zeno effect for a qubit in either a low- or high-frequency bath beyond the rotating-wave approximation , 2010, 1001.4831.

[58]  Franco Nori,et al.  Quantum spin squeezing , 2010, 1011.2978.

[59]  Braunstein,et al.  Multipartite entanglement for continuous variables: A quantum teleportation network , 1999, Physical review letters.

[60]  M. Devoret,et al.  Generating entangled microwave radiation over two transmission lines. , 2012, Physical review letters.

[61]  Cristiano Ciuti,et al.  Input- output theory of cavities in the ultrastrong coupling regime : The case of time-independent cavity parameters , 2006, cond-mat/0606554.

[62]  T. Ebbesen,et al.  Reversible switching of ultrastrong light-molecule coupling , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[63]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .