Certified Reduced Basis Model Characterization: a Frequentistic Uncertainty Framework

Abstract : We introduce a frequentistic validation framework for assessment - acceptance or rejection - of the consistency of a proposed parametrized partial differential equation model with respect to (noisy) experimental data from a physical system. Our method builds upon the Hotelling T2 statistical hypothesis test for bias first introduced by Balci & Sargent in 1984 and subsequently extended by McFarland & Mahadevan 2008. Our approach introduces two new elements: a spectral representation of the misfit which reduces the dimensionality and variance of the underlying multivariate Gaussian but without introduction of the usual regression assumptions; a certified (verified) reduced basis approximation - reduced order model - which greatly accelerates computational performance but without any loss of rigor relative to the full (finite element) discretization. We illustrate our approach with examples from heat transfer and acoustics, both based on synthetic data. We demonstrate that we can efficiently identify possibility regions that characterize parameter uncertainty; furthermore, in the case that the possibility region is empty, we can deduce the presence of unmodeled physics such as cracks or heterogeneities.

[1]  Benjamin S. Kirk,et al.  Library for Parallel Adaptive Mesh Refinement / Coarsening Simulations , 2006 .

[2]  N. Draper,et al.  Applied Regression Analysis. , 1967 .

[3]  Bernard Haasdonk,et al.  Reduced Basis Method for Finite Volume Approximations of Parametrized Evolution Equations , 2006 .

[4]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[5]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[6]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[7]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[8]  Laura Painton Swiler,et al.  Calibration, validation, and sensitivity analysis: What's what , 2006, Reliab. Eng. Syst. Saf..

[9]  Nicholas Zabaras,et al.  Using Bayesian statistics in the estimation of heat source in radiation , 2005 .

[10]  Gianluigi Rozza,et al.  Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Parabolic PDEs: Application to Real‐Time Bayesian Parameter Estimation , 2010 .

[11]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[12]  R. Sargent,et al.  Validation of Simulation Models via Simultaneous Confidence Intervals , 1984 .

[13]  Michel Loève,et al.  Probability Theory I , 1977 .

[14]  A. Patera,et al.  A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations , 2005 .

[15]  Franklin A. Graybill,et al.  Introduction to The theory , 1974 .

[16]  Ying Xiong,et al.  A better understanding of model updating strategies in validating engineering models , 2009 .

[17]  Philip B. Stark,et al.  A Primer of Frequentist and Bayesian Inference in Inverse Problems , 2010 .

[18]  Werner C. Rheinboldt,et al.  On the Error Behavior of the Reduced Basis Technique for Nonlinear Finite Element Approximations , 1983 .

[19]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[20]  P. Stern,et al.  Automatic choice of global shape functions in structural analysis , 1978 .

[21]  Victor Chew,et al.  Confidence, Prediction, and Tolerance Regions for the Multivariate Normal Distribution , 1966 .

[22]  Sankaran Mahadevan,et al.  Multivariate significance testing and model calibration under uncertainty , 2008 .

[23]  Anthony T. Patera,et al.  Inverse identification of thermal parameters using reduced-basis method , 2005 .

[24]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[25]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[26]  Anthony T. Patera,et al.  A Certified Reduced Basis Method for the Fokker--Planck Equation of Dilute Polymeric Fluids: FENE Dumbbells in Extensional Flow , 2010, SIAM J. Sci. Comput..

[27]  A. Noor Recent advances in reduction methods for nonlinear problems. [in structural mechanics , 1981 .

[28]  Kevin J. Dowding,et al.  Formulation of the thermal problem , 2008 .

[29]  T. A. Porsching,et al.  The reduced basis method for initial value problems , 1987 .