Machine Reading Comprehension: a Literature Review

Machine reading comprehension aims to teach machines to understand a text like a human and is a new challenging direction in Artificial Intelligence. This article summarizes recent advances in MRC, mainly focusing on two aspects (i.e., corpus and techniques). The specific characteristics of various MRC corpus are listed and compared. The main ideas of some typical MRC techniques are also described.

[1]  Daniel G. Bobrow,et al.  GUS, A Frame-Driven Dialog System , 1986, Artif. Intell..

[2]  Qiang Wu,et al.  Adapting boosting for information retrieval measures , 2010, Information Retrieval.

[3]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[4]  Yoshua Bengio,et al.  A Neural Probabilistic Language Model , 2003, J. Mach. Learn. Res..

[5]  George Kurian,et al.  Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation , 2016, ArXiv.

[6]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[7]  Sunita Sarawagi,et al.  Surprisingly Easy Hard-Attention for Sequence to Sequence Learning , 2018, EMNLP.

[8]  Phil Blunsom,et al.  Teaching Machines to Read and Comprehend , 2015, NIPS.

[9]  Ruslan Salakhutdinov,et al.  Gated-Attention Readers for Text Comprehension , 2016, ACL.

[10]  Denny Vrandecic,et al.  Wikidata: a new platform for collaborative data collection , 2012, WWW.

[11]  Simon Ostermann,et al.  MCScript: A Novel Dataset for Assessing Machine Comprehension Using Script Knowledge , 2018, LREC.

[12]  Ming Zhou,et al.  Gated Self-Matching Networks for Reading Comprehension and Question Answering , 2017, ACL.

[13]  Oren Etzioni,et al.  Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge , 2018, ArXiv.

[14]  Philip Bachman,et al.  NewsQA: A Machine Comprehension Dataset , 2016, Rep4NLP@ACL.

[15]  Jason Weston,et al.  The Goldilocks Principle: Reading Children's Books with Explicit Memory Representations , 2015, ICLR.

[16]  Dirk Weissenborn,et al.  Making Neural QA as Simple as Possible but not Simpler , 2017, CoNLL.

[17]  Lukasz Kaiser,et al.  Generating Wikipedia by Summarizing Long Sequences , 2018, ICLR.

[18]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[19]  Guokun Lai,et al.  Large-scale Cloze Test Dataset Designed by Teachers , 2018, ArXiv.

[20]  Jianfeng Gao,et al.  A Human Generated MAchine Reading COmprehension Dataset , 2018 .

[21]  Shuohang Wang,et al.  Learning Natural Language Inference with LSTM , 2015, NAACL.

[22]  Robert F. Simmons,et al.  Answering English questions by computer: a survey , 1965, CACM.

[23]  Phil Blunsom,et al.  Reasoning about Entailment with Neural Attention , 2015, ICLR.

[24]  Quoc V. Le,et al.  QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension , 2018, ICLR.

[25]  H. Robbins A Stochastic Approximation Method , 1951 .

[26]  Yoon Kim,et al.  Convolutional Neural Networks for Sentence Classification , 2014, EMNLP.

[27]  Richard Socher,et al.  Dynamic Coattention Networks For Question Answering , 2016, ICLR.

[28]  Daniel G. Bobrow,et al.  A frame driven dialog system , 1980 .

[29]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[30]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[31]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[32]  Omer Levy,et al.  Zero-Shot Relation Extraction via Reading Comprehension , 2017, CoNLL.

[33]  Dirk Weissenborn,et al.  FastQA: A Simple and Efficient Neural Architecture for Question Answering , 2017, ArXiv.

[34]  Lynette Hirschman,et al.  Natural language question answering: the view from here , 2001, Natural Language Engineering.

[35]  William A. Woods,et al.  Progress in natural language understanding: an application to lunar geology , 1973, AFIPS National Computer Conference.

[36]  Percy Liang,et al.  Adversarial Examples for Evaluating Reading Comprehension Systems , 2017, EMNLP.

[37]  Oren Etzioni,et al.  My Computer Is an Honor Student - but How Intelligent Is It? Standardized Tests as a Measure of AI , 2016, AI Mag..

[38]  Danqi Chen,et al.  A Thorough Examination of the CNN/Daily Mail Reading Comprehension Task , 2016, ACL.

[39]  Jürgen Schmidhuber,et al.  Highway Networks , 2015, ArXiv.

[40]  Lukasz Kaiser,et al.  Depthwise Separable Convolutions for Neural Machine Translation , 2017, ICLR.

[41]  Navdeep Jaitly,et al.  Pointer Networks , 2015, NIPS.

[42]  Sunita Sarawagi,et al.  Label Organized Memory Augmented Neural Network , 2017, ArXiv.

[43]  Bert F. Green,et al.  Baseball: an automatic question-answerer , 1899, IRE-AIEE-ACM '61 (Western).

[44]  Chris Dyer,et al.  The NarrativeQA Reading Comprehension Challenge , 2017, TACL.

[45]  Mihai Surdeanu,et al.  The Stanford CoreNLP Natural Language Processing Toolkit , 2014, ACL.

[46]  Terry Winograd,et al.  Understanding natural language , 1974 .

[47]  Ali Farhadi,et al.  Bidirectional Attention Flow for Machine Comprehension , 2016, ICLR.

[48]  Yoshua Bengio,et al.  Show, Attend and Tell: Neural Image Caption Generation with Visual Attention , 2015, ICML.

[49]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[50]  Percy Liang,et al.  Know What You Don’t Know: Unanswerable Questions for SQuAD , 2018, ACL.

[51]  Shuohang Wang,et al.  Machine Comprehension Using Match-LSTM and Answer Pointer , 2016, ICLR.

[52]  Oren Etzioni,et al.  Combining Retrieval, Statistics, and Inference to Answer Elementary Science Questions , 2016, AAAI.

[53]  Jian Zhang,et al.  SQuAD: 100,000+ Questions for Machine Comprehension of Text , 2016, EMNLP.

[54]  Ming-Wei Chang,et al.  Question Answering Using Enhanced Lexical Semantic Models , 2013, ACL.

[55]  François Chollet,et al.  Xception: Deep Learning with Depthwise Separable Convolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[56]  Yoshua Bengio,et al.  Maxout Networks , 2013, ICML.

[57]  Sebastian Riedel,et al.  Constructing Datasets for Multi-hop Reading Comprehension Across Documents , 2017, TACL.

[58]  Matthias Grabmair,et al.  Towards Inference-Oriented Reading Comprehension: ParallelQA , 2018, ArXiv.

[59]  Guokun Lai,et al.  RACE: Large-scale ReAding Comprehension Dataset From Examinations , 2017, EMNLP.

[60]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[61]  Jason Weston,et al.  Memory Networks , 2014, ICLR.

[62]  Danqi Chen,et al.  CoQA: A Conversational Question Answering Challenge , 2018, TACL.

[63]  Matthew Richardson,et al.  MCTest: A Challenge Dataset for the Open-Domain Machine Comprehension of Text , 2013, EMNLP.

[64]  Richard Socher,et al.  Pointer Sentinel Mixture Models , 2016, ICLR.

[65]  Yelong Shen,et al.  ReasoNet: Learning to Stop Reading in Machine Comprehension , 2016, CoCo@NIPS.

[66]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[67]  Eunsol Choi,et al.  TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension , 2017, ACL.