Meta-analysis of data from spaceflight transcriptome experiments does not support the idea of a common bacterial “spaceflight response”

[1]  W. Nicholson,et al.  Alterations in the Spectrum of Spontaneous Rifampicin-Resistance Mutations in the Bacillus subtilis rpoB Gene after Cultivation in the Human Spaceflight Environment , 2018, Front. Microbiol..

[2]  The Uniprot Consortium UniProt: the universal protein knowledgebase , 2018, Nucleic acids research.

[3]  Masahiro Ito,et al.  Mrp Antiporters Have Important Roles in Diverse Bacteria and Archaea , 2017, Front. Microbiol..

[4]  W. Nicholson,et al.  Cultivation in Space Flight Produces Minimal Alterations in the Susceptibility of Bacillus subtilis Cells to 72 Different Antibiotics and Growth-Inhibiting Compounds , 2017, Applied and Environmental Microbiology.

[5]  M. Kumar,et al.  Plants Assemble Species Specific Bacterial Communities from Common Core Taxa in Three Arcto-Alpine Climate Zones , 2017, Front. Microbiol..

[6]  W. Nicholson,et al.  Establishing Standard Protocols for Bacterial Culture in Biological Research in Canisters (BRIC) Hardware , 2016 .

[7]  L. Stodieck,et al.  A Molecular Genetic Basis Explaining Altered Bacterial Behavior in Space , 2016, PloS one.

[8]  RoyRaktim,et al.  A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions , 2016 .

[9]  W. Schumann,et al.  Regulation of bacterial heat shock stimulons , 2016, Cell Stress and Chaperones.

[10]  Joshua P Vandenbrink,et al.  Space, the final frontier: A critical review of recent experiments performed in microgravity. , 2016, Plant science : an international journal of experimental plant biology.

[11]  D. Lychakov Behavioural and functional vestibular disorders after space flight: 2. Fish, amphibians and birds , 2016, Journal of Evolutionary Biochemistry and Physiology.

[12]  Raktim N. Roy,et al.  A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions. , 2016, Astrobiology.

[13]  Marie-Liesse Asselin-Labat,et al.  Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses , 2015, Nucleic acids research.

[14]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[15]  Davide Heller,et al.  STRING v10: protein–protein interaction networks, integrated over the tree of life , 2014, Nucleic Acids Res..

[16]  Jason A. Rosenzweig,et al.  Low-shear force associated with modeled microgravity and spaceflight does not similarly impact the virulence of notable bacterial pathogens , 2014, Applied Microbiology and Biotechnology.

[17]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[18]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[19]  Charity W. Law,et al.  voom: precision weights unlock linear model analysis tools for RNA-seq read counts , 2014, Genome Biology.

[20]  M. Malecki,et al.  Bacterial adaptation to cold. , 2013, Microbiology.

[21]  M. Kanehisa,et al.  The KEGG databases and tools facilitating omics analysis: latest developments involving human diseases and pharmaceuticals. , 2012, Methods in molecular biology.

[22]  D. Grimm,et al.  The effects of weightlessness on the human organism and mammalian cells. , 2011, Current molecular medicine.

[23]  Carsten O. Daub,et al.  SAMStat: monitoring biases in next generation sequencing data , 2010, Bioinform..

[24]  C. Mark Ott,et al.  Transcriptional and Proteomic Responses of Pseudomonas aeruginosa PAO1 to Spaceflight Conditions Involve Hfq Regulation and Reveal a Role for Oxygen , 2010, Applied and Environmental Microbiology.

[25]  Anton Nekrutenko,et al.  Manipulation of FASTQ data with Galaxy , 2010, Bioinform..

[26]  D. Klaus,et al.  Space Microbiology , 2010, Microbiology and Molecular Biology Reviews.

[27]  M. Mergeay,et al.  Experimental design and environmental parameters affect Rhodospirillum rubrum S1H response to space flight , 2009, The ISME Journal.

[28]  Jason A. Rosenzweig,et al.  Spaceflight and modeled microgravity effects on microbial growth and virulence , 2009, Applied Microbiology and Biotechnology.

[29]  Chiaki Mukai,et al.  The space-flight environment: the International Space Station and beyond , 2009, Canadian Medical Association Journal.

[30]  G. Smyth,et al.  Microarray background correction: maximum likelihood estimation for the normal–exponential convolution , 2008, Biostatistics.

[31]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[32]  C. Mark Ott,et al.  Media Ion Composition Controls Regulatory and Virulence Response of Salmonella in Spaceflight , 2008, PloS one.

[33]  A. Aertsen,et al.  High-pressure microbiology , 2008 .

[34]  J. W. Wilson,et al.  Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq , 2007, Proceedings of the National Academy of Sciences.

[35]  Zhongxue Chen,et al.  Parameter Estimation for the Exponential-Normal Convolution Model for Background Correction of Affymetrix GeneChip Data , 2006, Statistical applications in genetics and molecular biology.

[36]  J. Mesirov,et al.  GenePattern 2.0 , 2006, Nature Genetics.

[37]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  S. Almashanu,et al.  Functional consequences of PRODH missense mutations. , 2005, American journal of human genetics.

[39]  Benjamin M. Bolstad,et al.  affy - analysis of Affymetrix GeneChip data at the probe level , 2004, Bioinform..

[40]  K. Isono,et al.  Cloning, characterization, and physical location of the rplY gene which encodes ribosomal protein L25 in Escherichia coli K12 , 1991, Molecular and General Genetics MGG.

[41]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[42]  Terry Speed,et al.  Normalization of cDNA microarray data. , 2003, Methods.

[43]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[44]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .