Multi-class fruit classification using RGB-D data for indoor robots

In this paper we present an effective and robust system to classify fruits under varying pose and lighting conditions tailored for an object recognition system on a mobile platform. Therefore, we present results on the effectiveness of our underlying segmentation method using RGB as well as depth cues for the specific technical setup of our robot. A combination of RGB low-level visual feature descriptors and 3D geometric properties is used to retrieve complementary object information for the classification task. The unified approach is validated using two multi-class RGB-D fruit categorization datasets. Experimental results compare different feature sets and classification methods and highlight the effectiveness of the proposed features using a Random Forest classifier.

[1]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[2]  Vincent Lepetit,et al.  Gradient Response Maps for Real-Time Detection of Textureless Objects , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[4]  Yannis Avrithis,et al.  Using Visual Context and Region Semantics for High-Level Concept Detection , 2009, IEEE Transactions on Multimedia.

[5]  Sebastian Nowozin,et al.  On feature combination for multiclass object classification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[6]  Dieter Fox,et al.  A large-scale hierarchical multi-view RGB-D object dataset , 2011, 2011 IEEE International Conference on Robotics and Automation.

[7]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[8]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[9]  Andrew Y. Ng,et al.  Convolutional-Recursive Deep Learning for 3D Object Classification , 2012, NIPS.

[10]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[11]  Jun Zhao,et al.  On-tree fruit recognition using texture properties and color data , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  Jacques Wainer,et al.  Automatic fruit and vegetable classification from images , 2010 .

[13]  Alexander Verl,et al.  A feature descriptor for texture-less object representation using 2D and 3D cues from RGB-D data , 2013, 2013 IEEE International Conference on Robotics and Automation.

[14]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[15]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[16]  Fei-Fei Li,et al.  Object discovery in 3D scenes via shape analysis , 2013, 2013 IEEE International Conference on Robotics and Automation.

[17]  Md. Monirul Islam,et al.  A review on automatic image annotation techniques , 2012, Pattern Recognit..

[18]  Vincent Lepetit,et al.  Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes , 2011, 2011 International Conference on Computer Vision.