Calibrating a global three-dimensional biogeochemical ocean model (MOPS-1.0)

Global biogeochemical ocean models contain a variety of different biogeochemical components and often much simplified representations of complex dynamical interactions, which are described by many (≈10–≈100) parameters. The values of many of these parameters are empirically difficult to constrain, due to the fact that in the models they represent processes for a range of different groups of organisms at the same time, while even for single species parameter values are often difficult to determine in situ. Therefore, these models are subject to a high level of parametric uncertainty. This may be of consequence for their skill with respect to accurately describing the relevant features of the present ocean, as well as their sensitivity to possible environmental changes. We here present a framework for the calibration of global biogeochemical ocean models on short and long time scales. The framework combines an offline approach for transport of biogeochemical tracers with an Estimation of Distribution Algorithm (Covariance Matrix Adaption Evolution Strategy, CMAES). We explore the performance and capability of this framework by five different optimizations of six biogeochemical parameters of a global biogeochemical model. First, a twin experiment explores the feasibility of this approach. Four optimizations against a climatology of observations of annual mean dissolved nutrients and oxygen determine the extent, to which different setups of the optimization influence model's fit and parameter estimates. Because the misfit function applied focuses on the large-scale distribution of inorganic biogeochemical tracers, parameters that act on large spatial and temporal scales are determined earliest, and with the least spread. Parameters more closely tied to surface biology, which act on shorter time scales, are more difficult to determine. In particular the search for optimum zooplankton parameters can benefit from a sound knowledge of maximum and minimum parameter values, leading to a more efficient optimization. It is encouraging that, although the misfit function does not contain any direct information about biogeochemical turnover, the optimized models nevertheless provide a better fit to observed global biogeochemical fluxes.

[1]  Samar Khatiwala,et al.  A computational framework for simulation of biogeochemical tracers in the ocean , 2007 .

[2]  J. Tjiputra,et al.  Assimilation of seasonal chlorophyll and nutrient data into an adjoint three‐dimensional ocean carbon cycle model: Sensitivity analysis and ecosystem parameter optimization , 2007 .

[3]  Richard A. Krishfield,et al.  Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1983 , 2008 .

[4]  Xu Ye,et al.  Advances in estimation of distribution algorithms , 2012 .

[5]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[6]  Scott C. Doney,et al.  Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: Results from Phase II of the Ocean Carbon‐cycle Model Intercomparison Project (OCMIP‐2) , 2007 .

[7]  Nikolaus Hansen,et al.  Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.

[8]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[9]  Anne Auger,et al.  Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009 , 2010, GECCO '10.

[10]  Yaochu Jin,et al.  Surrogate-assisted evolutionary computation: Recent advances and future challenges , 2011, Swarm Evol. Comput..

[11]  Michele Scardi,et al.  A comparison of global estimates of marine primary production from ocean color , 2006 .

[12]  Ben A. Ward,et al.  Marine ecosystem model analysis using data assimilation , 2009 .

[13]  B. V. Mooy,et al.  Impact of suboxia on sinking particulate organic carbon: Enhanced carbon flux and preferential degradation of amino acids via denitrification , 2002 .

[14]  Petros Koumoutsakos,et al.  Local Meta-models for Optimization Using Evolution Strategies , 2006, PPSN.

[15]  L. Jost Entropy and diversity , 2006 .

[16]  Anne Auger,et al.  Benchmarking the local metamodel CMA-ES on the noiseless BBOB'2013 test bed , 2013, GECCO.

[17]  Laurence A. Anderson,et al.  On the hydrogen and oxygen content of marine phytoplankton , 1995 .

[18]  Andreas Oschlies,et al.  Stoichiometries of remineralisation and denitrification in global biogeochemical ocean models , 2009 .

[19]  François Primeau,et al.  Optimization and sensitivity of a global biogeochemistry ocean model using combined in situ DIC, alkalinity, and phosphate data , 2008 .

[20]  Marjorie A. M. Friedrichs A data assimilative marine ecosystem model of the central equatorial Pacific: Numerical twin experiments , 2001 .

[21]  Chellapilla Patvardhan,et al.  Quantum-Inspired Evolutionary Algorithm for difficult knapsack problems , 2015, Memetic Comput..

[22]  Peter Challenor,et al.  Mechanistic site-based emulation of a global ocean biogeochemical model (MEDUSA 1.0) for parametric analysis and calibration: an application of the Marine Model Optimization Testbed (MarMOT 1.1) , 2015 .

[23]  A. Oschlies,et al.  Swept under the carpet: organic matter burial decreases global ocean biogeochemical model sensitivity to remineralization length scale , 2013 .

[24]  S. Levitus,et al.  US Government Printing Office , 1998 .

[25]  K. Wallmann Phosphorus imbalance in the global ocean? , 2010 .

[26]  Andreas Oschlies,et al.  Towards an assessment of simple global marine biogeochemical models of different complexity , 2010 .

[27]  Chellapilla Patvardhan,et al.  Solution of real-parameter optimization problems using novel Quantum Evolutionary Algorithm with applications in power dispatch , 2009, 2009 IEEE Congress on Evolutionary Computation.

[28]  E. Maier‐Reimer,et al.  Estimates of anthropogenic carbon uptake from four three‐dimensional global ocean models , 2001 .

[29]  Deborah K. Steinberg,et al.  Revisiting Carbon Flux Through the Ocean's Twilight Zone , 2006, Science.

[30]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[31]  Andreas Oschlies,et al.  Parameter estimates of a zero-dimensional ecosystem model applying the adjoint method , 2001 .

[32]  Jorge L. Sarmiento,et al.  Redfield ratios of remineralization determined by nutrient data analysis , 1994 .

[33]  Ulrike Löptien,et al.  Revisiting “nutrient trapping” in global coupled biogeochemical ocean circulation models , 2013 .

[34]  John P. Dunne,et al.  A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor , 2007 .

[35]  Chellapilla Patvardhan,et al.  Parallel improved quantum inspired evolutionary algorithm to solve large size Quadratic Knapsack Problems , 2016, Swarm Evol. Comput..

[36]  Andreas Oschlies,et al.  Simultaneous data-based optimization of a 1D-ecosystem model at three locations in the North Atlantic: Part I— Method and parameter estimates , 2003 .

[37]  Martin Pelikan,et al.  An introduction and survey of estimation of distribution algorithms , 2011, Swarm Evol. Comput..

[38]  A. Vaquer,et al.  ACCLIMATION OF NITRATE UPTAKE BY PHYTOPLANKTON TO HIGH SUBSTRATE LEVELS 1 , 2005 .

[39]  Michèle Sebag,et al.  Self-adaptive surrogate-assisted covariance matrix adaptation evolution strategy , 2012, GECCO '12.

[40]  A. Oschlies,et al.  MOPS-1 . 0 : towards a model for the regulation of the global oceanic nitrogen budget by marine biogeochemical processes , 2015 .

[41]  G. Evans,et al.  THE USE OF OPTIMIZATION TECHNIQUES TO MODEL MARINE ECOSYSTEM DYNAMICS AT THE JGOFS STATION AT 17 N 20 W , 1995 .

[42]  Richard Sanders,et al.  Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean , 2012 .

[43]  David M. Karl,et al.  VERTEX: carbon cycling in the northeast Pacific , 1987 .

[44]  Anne Auger,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions , 2009 .

[45]  Thomas Slawig,et al.  Reviews and syntheses: parameter identification in marine planktonic ecosystem modelling , 2016 .

[46]  A. Oschlies,et al.  Numerical effects on organic-matter sedimentation and remineralization in biogeochemical ocean models , 2011 .

[47]  G. Evans,et al.  Defining misfit between biogeochemical models and data sets , 2003 .

[48]  Thomas R. Anderson,et al.  Parameter optimisation techniques and the problem of underdetermination in marine biogeochemical models , 2010 .

[49]  A. Oschlies,et al.  Swept under the carpet : the e ff ect of organic matter burial in global biogeochemical ocean models , 2013 .

[50]  François Primeau,et al.  Optimization and sensitivity study of a biogeochemistry ocean model using an implicit solver and in situ phosphate data , 2006 .

[51]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[52]  Ken Caldeira,et al.  Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean , 2007 .

[53]  François W. Primeau,et al.  Sensitivity and Optimization Study of a Biogeochemistry Ocean Model using an Implicit Solver and In-Situ Phosphate Data , 2006 .

[54]  Petros Koumoutsakos,et al.  A Method for Handling Uncertainty in Evolutionary Optimization With an Application to Feedback Control of Combustion , 2009, IEEE Transactions on Evolutionary Computation.

[55]  Andreas Oschlies,et al.  Simultaneous data-based optimization of a 1D-ecosystem model at three locations in the North Atlantic Ocean: Part 2) Standing stocks and nitrogen fluxes , 2003 .

[56]  Thomas Slawig,et al.  Parameter optimization and uncertainty analysis in a model of oceanic CO2 uptake using a hybrid algorithm and algorithmic differentiation , 2010 .

[57]  Andreas Oschlies,et al.  Sensitivity analysis of simple global marine biogeochemical models , 2012 .

[58]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[59]  G. Evans,et al.  The Use of Optimization Techniques to Model Marine Ecosystem Dynamics at the JGOFS Station at 47 degrees N 20 degrees W [and Discussion] , 1995 .

[60]  J. K. Moore,et al.  Variable C : N : P stoichiometry of dissolved organic matter cycling in the Community Earth System Model , 2014 .

[61]  Adrian P. Martin,et al.  Accounting for unresolved spatial variability in marine ecosystems using time lags , 2006 .

[62]  Ulrike Löptien,et al.  Constraining parameters in marine pelagic ecosystem models – is it actually feasible with typical observations of standing stocks? , 2015 .

[63]  J. Minster,et al.  Oxygen consumption and nutrient regeneration ratios along isopycnal horizons in the Pacific Ocean , 1989 .

[64]  Anne Auger,et al.  Evolution Strategies , 2018, Handbook of Computational Intelligence.

[65]  Christoph Heinze,et al.  Inconsistent strategies to spin up models in CMIP5: implications for ocean biogeochemical model performance assessment , 2015 .

[66]  Dirk V. Arnold,et al.  Weighted multirecombination evolution strategies , 2006, Theor. Comput. Sci..

[67]  Chellapilla Patvardhan,et al.  A New QEA Computing Near-Optimal Low-Discrepancy Colorings in the Hypergraph of Arithmetic Progressions , 2013, SEA.

[68]  L. Perelman,et al.  A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers , 1997 .

[69]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Tutorial , 2016, ArXiv.

[70]  Sydney Levitus,et al.  World ocean atlas 2005. Vol. 4, Nutrients (phosphate, nitrate, silicate) , 2006 .

[71]  A. Yool,et al.  Mechanistic site-based emulation of a global ocean biogeochemical model for parametric analysis and calibration , 2014 .

[72]  C. Jeandel,et al.  Selecting a global optimization method to estimate the oceanic particle cycling rate constants , 2000 .

[73]  A. Calbet,et al.  Microzooplankton grazing in the oceans: impacts, data variability, knowledge gaps and future directions , 2013 .

[74]  D. Bianchi,et al.  Oxygen minimum zones in the tropical Pacific across CMIP5 models: mean state differences and climate change trends , 2015 .

[75]  Taro Takahashi,et al.  Redfield ratio based on chemical data from isopycnal surfaces , 1985 .

[76]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[77]  Malte Prieß,et al.  Marine ecosystem model calibration with real data using enhanced surrogate-based optimization , 2013, J. Comput. Sci..

[78]  E. Achterberg,et al.  Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean , 2015, Proceedings of the National Academy of Sciences.