Upper bounds of rates of complex orthogonal space-time block code
暂无分享,去创建一个
[1] Thomas L. Marzetta,et al. A transmitter diversity scheme for wideband CDMA systems based on space-time spreading , 2001, IEEE J. Sel. Areas Commun..
[2] Xue-Bin Liang,et al. A high-rate orthogonal space-time block code , 2003, IEEE Commun. Lett..
[3] Costas N. Georghiades,et al. A full-rate, full-diversity four-antenna quasi-orthogonal space-time block code , 2005, IEEE Transactions on Wireless Communications.
[4] A. Hurwitz,et al. Über die Komposition der quadratischen Formen , 1922 .
[5] Xiang-Gen Xia,et al. On the nonexistence of rate-one generalized complex orthogonal designs , 2003, IEEE Trans. Inf. Theory.
[6] W. Wolfe. Amicable Orthogonal Designs-Existence , 1976, Canadian Journal of Mathematics.
[7] Habong Chung,et al. On orthogonal designs and space-time codes , 2002, Proceedings IEEE International Symposium on Information Theory,.
[8] Petre Stoica,et al. Space-Time block codes: A maximum SNR approach , 2001, IEEE Trans. Inf. Theory.
[9] J. Radon. Lineare scharen orthogonaler matrizen , 1922 .
[10] Xiang-Gen Xia,et al. On Space-Time Block Codes from Complex Orthogonal Designs , 2003, Wirel. Pers. Commun..
[11] Hamid Jafarkhani,et al. Pseudo Orthogonal Designs as Space-Time Block Codes , 2002 .
[12] Daniel B. Shapiro,et al. Compositions of Quadratic Forms , 2000 .
[13] Siavash M. Alamouti,et al. A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..
[14] Ari Hottinen,et al. Square-matrix embeddable space-time block codes for complex signal constellations , 2002, IEEE Trans. Inf. Theory.
[15] A. R. Calderbank,et al. Orthogonal designs and third generation wireless communication , 2001 .
[16] Xiang-Gen Xia,et al. Two generalized complex orthogonal space-time block codes of rates 7/11 and 3/5 for 5 and 6 transmit antennas , 2003, IEEE Trans. Inf. Theory.
[17] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[18] Lori A. Dalton. New orthogonal space-time block codes with full diversity , 2002 .
[19] A. Robert Calderbank,et al. Space-Time block codes from orthogonal designs , 1999, IEEE Trans. Inf. Theory.
[20] A. Hurwitz. Über die Komposition der quadratischen Formen von beliebig vielen Variablen , 1963 .
[21] Jennifer Seberry,et al. Orthogonal Designs: Quadratic Forms and Hadamard Matrices , 1979 .
[22] A. Robert Calderbank,et al. Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.
[23] Y. Wong,et al. Isoclinic N planes in Euclidean 2N space, Clifford parallels in elliptic (2N-1) space, and the Hurwitz matrix equations , 1961 .