Arbitrary-degree T-splines for isogeometric analysis of fully nonlinear Kirchhoff-Love shells

Abstract This paper focuses on the employment of analysis-suitable T-spline surfaces of arbitrary degree for performing structural analysis of fully nonlinear thin shells. Our aim is to bring closer a seamless and flexible integration of design and analysis for shell structures. The local refinement capability of T-splines together with the Kirchhoff–Love shell discretization, which does not use rotational degrees of freedom, leads to a highly efficient and accurate formulation. Trimmed NURBS surfaces, which are ubiquitous in CAD programs, cannot be directly applied in analysis, however, T-splines can reparameterize these surfaces leading to analysis-suitable untrimmed T-spline representations. We consider various classical nonlinear benchmark problems where the cylindrical and spherical geometries are exactly represented and point loads are accurately captured through local h -refinement. Taking advantage of the higher inter-element continuity of T-splines, smooth stress resultants are plotted without using projection methods. Finally, we construct various trimmed NURBS surfaces with Rhino, an industrial and general-purpose CAD program, convert them to T-spline surfaces, and directly use them in analysis.

[1]  Jörg Peters,et al.  Matched Gk-constructions always yield Ck-continuous isogeometric elements , 2015, Comput. Aided Geom. Des..

[2]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[3]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[4]  Hongwei Lin,et al.  Watertight trimmed NURBS , 2008, ACM Trans. Graph..

[5]  Ignasi Colominas,et al.  Capillary networks in tumor angiogenesis: From discrete endothelial cells to phase‐field averaged descriptions via isogeometric analysis , 2013, International journal for numerical methods in biomedical engineering.

[6]  Ronald Maier,et al.  Integrated Modeling , 2011, Encyclopedia of Knowledge Management.

[7]  Jörg Peters,et al.  A Comparative Study of Several Classical, Discrete Differential and Isogeometric Methods for Solving Poisson's Equation on the Disk , 2014, Axioms.

[8]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[9]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[10]  Thomas J. R. Hughes,et al.  Blended isogeometric shells , 2013 .

[11]  Hugo Casquero,et al.  Hybrid-degree weighted T-splines and their application in isogeometric analysis , 2016 .

[12]  T. Hughes,et al.  Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations , 2010 .

[13]  Wenping Wang,et al.  Feature-preserving T-mesh construction using skeleton-based polycubes , 2015, Comput. Aided Des..

[14]  F. Auricchio,et al.  Single-variable formulations and isogeometric discretizations for shear deformable beams , 2015 .

[15]  Thomas J. R. Hughes,et al.  Volumetric T-spline construction using Boolean operations , 2014, Engineering with Computers.

[16]  Hyun-Jung Kim,et al.  Isogeometric analysis for trimmed CAD surfaces , 2009 .

[17]  J. N. Reddy,et al.  Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures , 2007 .

[18]  Giancarlo Sangalli,et al.  ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .

[19]  Y. Bazilevs,et al.  Weakly enforced essential boundary conditions for NURBS‐embedded and trimmed NURBS geometries on the basis of the finite cell method , 2013 .

[20]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[21]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[22]  Michael C. H. Wu,et al.  Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials , 2015 .

[23]  Roland Wüchner,et al.  Isogeometric analysis of trimmed NURBS geometries , 2012 .

[24]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[25]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[26]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[27]  T. Hughes,et al.  Solid T-spline construction from boundary representations for genus-zero geometry , 2012 .

[28]  Alessandro Reali,et al.  Isogeometric collocation using analysis-suitable T-splines of arbitrary degree , 2016 .

[29]  J. Zu,et al.  3D coupled thermo-mechanical phase-field modeling of shape memory alloy dynamics via isogeometric analysis , 2014, 1403.5612.

[30]  Alessandro Reali,et al.  Isogeometric Collocation: Cost Comparison with Galerkin Methods and Extension to Adaptive Hierarchical NURBS Discretizations , 2013 .

[31]  Sven Klinkel,et al.  Using finite strain 3D‐material models in beam and shell elements , 2002 .

[32]  Yongjie Zhang,et al.  A hybrid variational‐collocation immersed method for fluid‐structure interaction using unstructured T‐splines , 2016 .

[33]  Hugo Casquero,et al.  NURBS-based numerical proxies for red blood cells and circulating tumor cells in microscale blood flow , 2017 .

[34]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[35]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[36]  Roland Wüchner,et al.  Analysis in computer aided design: Nonlinear isogeometric B-Rep analysis of shell structures , 2015 .

[37]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[38]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[39]  G. S. Sekhon,et al.  Large Deformation -I , 2003 .

[40]  Robert Schmidt,et al.  Realization of an integrated structural design process: analysis-suitable geometric modelling and isogeometric analysis , 2010, Comput. Vis. Sci..

[41]  C. Bona-Casas,et al.  A NURBS-based immersed methodology for fluid–structure interaction , 2015 .

[42]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[43]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[44]  Ruben Juanes,et al.  Three-dimensional simulation of unstable gravity-driven infiltration of water into a porous medium , 2013, J. Comput. Phys..

[45]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[46]  Giancarlo Sangalli,et al.  Analysis-Suitable T-splines are Dual-Compatible , 2012 .

[47]  Xesús Nogueira,et al.  An unconditionally energy-stable method for the phase field crystal equation , 2012 .

[48]  Carlo Sansour,et al.  Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assesment of hybrid stress, hybrid strain and enhanced strain elements , 2000 .

[49]  Yuri Bazilevs,et al.  Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models , 2015, Computational mechanics.

[50]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[51]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[52]  E. Ramm,et al.  Models and finite elements for thin-walled structures , 2004 .

[53]  Alessandro Reali,et al.  An isogeometric collocation approach for Bernoulli–Euler beams and Kirchhoff plates , 2015 .

[54]  Hector Gomez,et al.  Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models , 2014, J. Comput. Phys..

[55]  Lei Liu,et al.  Weighted T-splines with application in reparameterizing trimmed NURBS surfaces , 2015 .

[56]  Ignasi Colominas,et al.  Coupling of discrete random walks and continuous modeling for three-dimensional tumor-induced angiogenesis , 2014 .

[57]  Thomas J. R. Hughes,et al.  A large deformation, rotation-free, isogeometric shell , 2011 .

[58]  Thomas J. R. Hughes,et al.  Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology , 2012, Comput. Aided Des..

[59]  Xin Li,et al.  Analysis-suitable T-splines: characterization, refineability, and approximation , 2012, ArXiv.

[60]  Thomas J. R. Hughes,et al.  Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation , 2014, Computational Mechanics.

[61]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[62]  Yuri Bazilevs,et al.  Interaction of complex fluids and solids: theory, algorithms and application to phase-change-driven implosion , 2015 .

[63]  J. C. Simo,et al.  Associated coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation , 1992 .

[64]  Thomas J. R. Hughes,et al.  Conformal solid T-spline construction from boundary T-spline representations , 2013 .

[65]  P. Pimenta,et al.  Generalization of the C1 TUBA plate finite elements to the geometrically exact Kirchhoff-Love shell model , 2015 .

[66]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[67]  K. Y. Sze,et al.  Popular benchmark problems for geometric nonlinear analysis of shells , 2004 .

[68]  Peter Schröder,et al.  Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..

[69]  Giancarlo Sangalli,et al.  Characterization of analysis-suitable T-splines , 2015, Comput. Aided Geom. Des..

[70]  D Weichert,et al.  Nonlinear Continuum Mechanics of Solids: Fundamental Mathematical and Physical Concepts , 2000 .

[71]  Thomas J. R. Hughes,et al.  Liquid–vapor phase transition: Thermomechanical theory, entropy stable numerical formulation, and boiling simulations , 2015 .