An Exponential Wave Integrator Sine Pseudospectral Method for the Klein-Gordon-Zakharov System

An exponential wave integrator sine pseudospectral method is presented and analyzed for discretizing the Klein--Gordon--Zakharov (KGZ) system with two dimensionless parameters $0<\varepsilon\le 1$ and $0<\gamma\le 1$ which are inversely proportional to the plasma frequency and the speed of sound, respectively. The main idea in the numerical method is to apply the sine pseudospectral discretization for spatial derivatives followed by using an exponential wave integrator for temporal derivatives in phase space. The method is explicit, symmetric in time, and it is of spectral accuracy in space and second-order accuracy in time for any fixed $\varepsilon=\varepsilon_0$ and $\gamma=\gamma_0$. In the $\mathcal{O}(1)$-plasma frequency and speed of sound regime, i.e., $\varepsilon=\mathcal{O}(1)$ and $\gamma=\mathcal{O}(1)$, we establish rigorously error estimates for the numerical method in the energy space $H^1\times L^2$. We also study numerically the resolution of the method in the simultaneous high-plasma-fr...

[1]  Weizhu Bao,et al.  Uniform Error Estimates of Finite Difference Methods for the Nonlinear Schrödinger Equation with Wave Operator , 2012, SIAM J. Numer. Anal..

[2]  L. Vu-Quoc,et al.  Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .

[3]  Anders Wäänänen,et al.  Advanced resource connector middleware for lightweight computational Grids , 2007 .

[4]  Weiming Cao,et al.  Fourier Collocation Method for Solving Nonlinear Klein-Gordon Equation , 1993 .

[5]  D. Frantzeskakis,et al.  Solitary Wave Collisions , 2009 .

[6]  Glenn,et al.  Plasma Dynamics , 2009 .

[7]  D. B. Duncan,et al.  Sympletic Finite Difference Approximations of the Nonlinear Klein--Gordon Equation , 1997 .

[8]  Volker Grimm,et al.  On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations , 2005, Numerische Mathematik.

[9]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[10]  Sergiu Klainerman,et al.  Space-time estimates for null forms and the local existence theorem , 1993 .

[11]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[12]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[13]  Weizhu Bao,et al.  Analysis and comparison of numerical methods for the Klein–Gordon equation in the nonrelativistic limit regime , 2011, Numerische Mathematik.

[14]  B. G. Pachpatte Inequalities for finite difference equations , 2001 .

[15]  Volker Grimm,et al.  A note on the Gautschi-type method for oscillatory second-order differential equations , 2005, Numerische Mathematik.

[16]  K. Nakanishi,et al.  FROM THE KLEIN–GORDON–ZAKHAROV SYSTEM TO THE NONLINEAR SCHRÖDINGER EQUATION , 2005 .

[17]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[18]  Tohru Ozawa,et al.  Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions , 1999 .

[19]  Weizhu Bao,et al.  Comparisons between sine-Gordon and perturbed nonlinear Schrödinger equations for modeling light bullets beyond critical collapse , 2010 .

[20]  E. Hairer,et al.  Numerical Energy Conservation for Multi-Frequency Oscillatory Differential Equations , 2005 .

[21]  Y. Tourigny,et al.  Product approximation for nonlinear Klein-Gordon equations , 1990 .

[22]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[23]  Jalil Rashidinia,et al.  Numerical solution of the nonlinear Klein-Gordon equation , 2010, J. Comput. Appl. Math..

[24]  Fangfang Sun,et al.  Efficient and Stable Numerical Methods for the Generalized and Vector Zakharov System , 2005, SIAM J. Sci. Comput..

[25]  K. Nakanishi,et al.  Energy convergence for singular limits of Zakharov type systems , 2008 .

[26]  Marlis Hochbruck,et al.  A Gautschi-type method for oscillatory second-order differential equations , 1999, Numerische Mathematik.

[27]  W. Gautschi Numerical integration of ordinary differential equations based on trigonometric polynomials , 1961 .

[28]  Weizhu Bao,et al.  Uniform and Optimal Error Estimates of an Exponential Wave Integrator Sine Pseudospectral Method for the Nonlinear Schrödinger Equation with Wave Operator , 2013, SIAM J. Numer. Anal..

[29]  David Cohen,et al.  Conservation properties of numerical integrators for highly oscillatory Hamiltonian systems , 2006 .

[30]  Weizhu Bao,et al.  Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation , 2012, Math. Comput..

[31]  Jie Shen,et al.  Spectral and High-Order Methods with Applications , 2006 .

[32]  Ernst Hairer,et al.  Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations , 2008, Numerische Mathematik.

[33]  D. Duncan,et al.  SYMPLECTIC FINITE DIFFERENCE APPROXIMATIONS OF THE NONLINEAR KLEIN–GORDON EQUATION∗ , 1997 .