Approximating the marginal likelihood using copula

Model selection is an important activity in modern data analysis and the conventional Bayesian approach to this problem involves calculation of marginal likelihoods for different models, together with diagnostics which examine specific aspects of model fit. Calculating the marginal likelihood is a difficult computational problem. Our article proposes some extensions of the Laplace approximation for this task that are related to copula models and which are easy to apply. Variations which can be used both with and without simulation from the posterior distribution are considered, as well as use of the approximations with bridge sampling and in random effects models with a large number of latent variables. The use of a t-copula to obtain higher accuracy when multivariate dependence is not well captured by a Gaussian copula is also discussed.

[1]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[2]  M. Newton,et al.  Estimating the Integrated Likelihood via Posterior Simulation Using the Harmonic Mean Identity , 2006 .

[3]  Xiao-Li Meng,et al.  SIMULATING RATIOS OF NORMALIZING CONSTANTS VIA A SIMPLE IDENTITY: A THEORETICAL EXPLORATION , 1996 .

[4]  Adrian E. Raftery,et al.  Hypothesis testing and model selection , 1996 .

[5]  Joseph Hilbe,et al.  Data Analysis Using Regression and Multilevel/Hierarchical Models , 2009 .

[6]  Satishs Iyengar,et al.  Multivariate Models and Dependence Concepts , 1998 .

[7]  Chuhsing Kate Hsiao,et al.  Bayesian marginal inference via candidate's formula , 2004, Stat. Comput..

[8]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[9]  Anthony O'Hagan,et al.  Kendall's Advanced Theory of Statistics, volume 2B: Bayesian Inference, second edition , 2004 .

[10]  D. Dey,et al.  A General Class of Multivariate Skew-Elliptical Distributions , 2001 .

[11]  Y. Ogata A Monte Carlo method for high dimensional integration , 1989 .

[12]  G. Nicholls,et al.  Bridge estimation of the probability density at a point , 2001 .

[13]  S. Chib,et al.  Marginal Likelihood From the Metropolis–Hastings Output , 2001 .

[14]  P. Rousseeuw,et al.  Unmasking Multivariate Outliers and Leverage Points , 1990 .

[15]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[16]  R. Kohn,et al.  Bayesian Estimation of a Random Effects Heteroscedastic Probit Model , 2008 .

[17]  A. Raftery,et al.  Estimating Bayes Factors via Posterior Simulation with the Laplace—Metropolis Estimator , 1997 .

[18]  Brian D. Ripley,et al.  Modern Applied Statistics with S Fourth edition , 2002 .

[19]  Walter R. Gilks,et al.  Hypothesis testing and model selection , 1995 .

[20]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[21]  S. E. Hills,et al.  Diagnostic plots for improved parameterization in Bayesian inference , 1993 .

[22]  Xiao-Li Meng,et al.  Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling , 1998 .

[23]  P. X. Song,et al.  Multivariate Dispersion Models Generated From Gaussian Copula , 2000 .

[24]  Improved Estimation of Normalizing Constants From Markov Chain Monte Carlo Output , 2008 .

[25]  A. Gelfand,et al.  Bayesian Model Choice: Asymptotics and Exact Calculations , 1994 .

[26]  A. Pettitt,et al.  Marginal likelihood estimation via power posteriors , 2008 .

[27]  B. Carlin,et al.  Bayesian Model Choice Via Markov Chain Monte Carlo Methods , 1995 .

[28]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[29]  L. Wasserman,et al.  Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .

[30]  David W. Hosmer,et al.  Applied Logistic Regression , 1991 .

[31]  M. G. Pittau,et al.  A Default Prior Distribution for Logistic and Other Regression Models , 2007 .

[32]  J. Skilling Nested sampling for general Bayesian computation , 2006 .

[33]  Peter Reichert,et al.  An Efficient Sampling Technique for Bayesian Inference With Computationally Demanding Models , 2002, Technometrics.