Computational aspects of morphological instabilities using isogeometric analysis

Abstract Morphological instabilities play a crucial role in the behavior of living systems as well as advanced engineering applications. Such instabilities initiate when a thin stiff film on a compliant substrate is subject to compressive stresses. For bilayer systems, the first mode of instability is sinusoidal wrinkling. While the critical conditions to induce wrinkling are extensively studied, the more complex patterns formed beyond wrinkling remain elusive and poorly understood. The objective of this contribution is to establish a generic computational framework capable of capturing various instabilities, using isogeometric analysis (IGA) enhanced with a concurrent eigenvalue analysis. It is shown that the eigenvalue analysis provides quantitatively accurate predictions for the onset of instabilities. In addition, the results are compared with the standard finite element analysis (FEA) and it is clearly observed that IGA furnishes significantly more accurate results compared to FEA, for the same number of degrees of freedom. We believe that this generic framework is widely applicable to advance our understanding of emergence and evolution of morphological instabilities for a rich variety of applications in soft materials and living systems.

[1]  I. Temizer,et al.  Multiscale thermomechanical contact: Computational homogenization with isogeometric analysis , 2014 .

[2]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[3]  Huajian Gao,et al.  The primary bilayer ruga-phase diagram I: Localizations in ruga evolution , 2015 .

[4]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[5]  Xuanhe Zhao,et al.  A three-dimensional phase diagram of growth-induced surface instabilities , 2015, Scientific Reports.

[6]  Shuman Xia,et al.  Folding wrinkles of a thin film stiff layer on a soft substrate , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  Falai Chen,et al.  A survey on the local refinable splines , 2016 .

[8]  Thomas J. R. Hughes,et al.  An isogeometric analysis approach to gradient damage models , 2011 .

[9]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[10]  Chad M. Landis,et al.  Concomitant wrinkling and buckle-delamination of elastic thin films on compliant substrates , 2011 .

[11]  Rigoberto Burgueño,et al.  Buckling-induced smart applications: recent advances and trends , 2015 .

[12]  John A. Rogers,et al.  Buckling of a stiff thin film on a compliant substrate in large deformation , 2008 .

[13]  Peter Wriggers,et al.  Contact treatment in isogeometric analysis with NURBS , 2011 .

[14]  Ellen Kuhl,et al.  Frontiers in growth and remodeling. , 2012, Mechanics research communications.

[15]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[16]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[17]  K. Bertoldi,et al.  Bloch wave approach for the analysis of sequential bifurcations in bilayer structures , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  J. Dolbow,et al.  Imposing Dirichlet boundary conditions with Nitsche's method and spline‐based finite elements , 2010 .

[19]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[20]  C. Linder,et al.  An algorithmic approach to multi-layer wrinkling , 2016 .

[21]  Paul Steinmann,et al.  Secondary instabilities modulate cortical complexity in the mammalian brain , 2015, Philosophical magazine.

[22]  A. McCulloch,et al.  Stress-dependent finite growth in soft elastic tissues. , 1994, Journal of biomechanics.

[23]  Ping Wang,et al.  Adaptive isogeometric analysis using rational PHT-splines , 2011, Comput. Aided Des..

[24]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[25]  Xi-Qiao Feng,et al.  Towards a quantitative understanding of period-doubling wrinkling patterns occurring in film/substrate bilayer systems , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  Mykola Tkachuk,et al.  The maximal advance path constraint for the homogenization of materials with random network microstructure , 2012 .

[27]  Trond Kvamsdal,et al.  Isogeometric analysis using LR B-splines , 2014 .

[28]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[29]  Michele Conti,et al.  Innovative and efficient stent flexibility simulations based on isogeometric analysis , 2015 .

[30]  T. Pence,et al.  Hyperelastic Internal Balance by Multiplicative Decomposition of the Deformation Gradient , 2014 .

[31]  T. Witten,et al.  Wrinkle to fold transition: influence of the substrate response , 2013 .

[32]  Thomas J. R. Hughes,et al.  Extended Truncated Hierarchical Catmull–Clark Subdivision , 2016 .

[33]  E. Kuhl,et al.  On the Role of Mechanics in Chronic Lung Disease , 2013, Materials.

[34]  H. G. Allen Analysis and design of structural sandwich panels , 1969 .

[35]  Thomas J. R. Hughes,et al.  An isogeometric approach to cohesive zone modeling , 2011 .

[36]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[37]  E. Kuhl,et al.  Tri-layer wrinkling as a mechanism for anchoring center initiation in the developing cerebellum. , 2016, Soft matter.

[38]  J. Hutchinson The role of nonlinear substrate elasticity in the wrinkling of thin films , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[39]  Lihua Jin,et al.  Bifurcation Diagrams for the Formation of Wrinkles or Creases in Soft Bilayers , 2015 .

[40]  Xuanhe Zhao,et al.  Beyond wrinkles: Multimodal surface instabilities for multifunctional patterning , 2016 .

[41]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[42]  C. Keplinger,et al.  A highly stretchable autonomous self-healing elastomer. , 2016, Nature chemistry.

[43]  Pedro M Reis,et al.  Smart Morphable Surfaces for Aerodynamic Drag Control , 2014, Advanced materials.

[44]  Willi Volksen,et al.  A buckling-based metrology for measuring the elastic moduli of polymeric thin films , 2004, Nature materials.

[45]  Ellen Kuhl,et al.  Characterization of living skin using multi-view stereo and isogeometric analysis. , 2014, Acta biomaterialia.

[46]  L. Mahadevan,et al.  Nested self-similar wrinkling patterns in skins , 2005, Nature materials.

[47]  Hung Nguyen-Xuan,et al.  Explicit finite deformation analysis of isogeometric membranes , 2014 .

[48]  M. Trejo,et al.  Elasticity and wrinkled morphology of Bacillus subtilis pellicles , 2013, Proceedings of the National Academy of Sciences.

[49]  E. Kuhl,et al.  A novel strategy to identify the critical conditions for growth-induced instabilities. , 2014, Journal of the mechanical behavior of biomedical materials.

[50]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[51]  E. Kuhl,et al.  Period-doubling and period-tripling in growing bilayered systems , 2015, Philosophical magazine.

[52]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[53]  Christian Linder,et al.  A homogenization approach for nonwoven materials based on fiber undulations and reorientation , 2014 .

[54]  Z. Suo,et al.  Nonlinear analyses of wrinkles in a film bonded to a compliant substrate , 2005 .

[55]  Pei-Chun Lin,et al.  Harnessing Surface Wrinkle Patterns in Soft Matter , 2010 .

[56]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[57]  Alessandro Reali,et al.  AN ISO GEOMETRIC ANALYSIS APPROACH FOR THE STUDY OF STRUCTURAL VIBRATIONS , 2006 .

[58]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[59]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[60]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[61]  Serdar Göktepe,et al.  A generic approach towards finite growth with examples of athlete's heart, cardiac dilation, and cardiac wall thickening , 2010 .

[62]  J D Humphrey,et al.  Perspectives on biological growth and remodeling. , 2011, Journal of the mechanics and physics of solids.

[63]  V. Caviness,et al.  Mechanical model of brain convolutional development. , 1975, Science.

[64]  Krishna Garikipati,et al.  Three-dimensional isogeometric solutions to general boundary value problems of Toupin’s gradient elasticity theory at finite strains , 2014, 1404.0094.

[65]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[66]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[67]  E. Kuhl,et al.  Pattern selection in growing tubular tissues. , 2014, Physical review letters.

[68]  Ha Uk Chung,et al.  Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling , 2015, Science.

[69]  Alfred J. Crosby,et al.  Surface Wrinkles for Smart Adhesion , 2008 .

[70]  Arezki Boudaoud,et al.  Multiple-length-scale elastic instability mimics parametric resonance of nonlinear oscillators , 2010, 1006.2404.

[71]  Biophysics: Unfolding the brain , 2016 .

[72]  Ying Li,et al.  The effect of mechanical-driven volumetric change on instability patterns of bilayered soft solids. , 2015, Soft matter.

[73]  Computational aspects of growth-induced instabilities through eigenvalue analysis , 2015 .

[74]  Peter Wriggers,et al.  A large deformation frictional contact formulation using NURBS‐based isogeometric analysis , 2011 .

[75]  D. J. Benson,et al.  Patient-specific isogeometric structural analysis of aortic valve closure , 2015 .

[76]  Huajian Gao,et al.  Mechanics of morphological instabilities and surface wrinkling in soft materials: a review , 2012 .

[77]  C. Linder,et al.  Understanding geometric instabilities in thin films via a multi-layer model. , 2016, Soft matter.

[78]  Christian Miehe,et al.  A micromechanically motivated diffusion-based transient network model and its incorporation into finite rubber viscoelasticity , 2011 .

[79]  Jan Genzer,et al.  Soft matter with hard skin: From skin wrinkles to templating and material characterization. , 2006, Soft matter.

[80]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[81]  Yanping Cao,et al.  Wrinkling Phenomena in Neo-Hookean Film/Substrate Bilayers , 2012 .

[82]  Vinh Phu Nguyen,et al.  Isogeometric analysis: An overview and computer implementation aspects , 2012, Math. Comput. Simul..

[83]  Marcelo Epstein,et al.  Thermomechanics of volumetric growth in uniform bodies , 2000 .

[84]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[85]  Maurice A. Biot,et al.  Folding instability of a layered viscoelastic medium under compression , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[86]  M. Brenner,et al.  Liquid transport facilitated by channels in Bacillus subtilis biofilms , 2012, Proceedings of the National Academy of Sciences.

[87]  L. Taber Biomechanics of Growth, Remodeling, and Morphogenesis , 1995 .

[88]  S. Timoshenko Theory of Elastic Stability , 1936 .

[89]  T. Tallinen,et al.  Surface sulci in squeezed soft solids. , 2013, Physical review letters.

[90]  John A. Rogers,et al.  Mechanical Buckling: Mechanics, Metrology, and Stretchable Electronics , 2009 .

[91]  Huajian Gao,et al.  Ruga mechanics of creasing: from instantaneous to setback creases , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[92]  Lihua Jin,et al.  Mechanics of wrinkle/ridge transitions in thin film/substrate systems , 2015 .

[93]  Yanping Cao,et al.  Localized ridge wrinkling of stiff films on compliant substrates , 2012 .

[94]  Christopher J. Ploch,et al.  Author ' s personal copy Growing skin : A computational model for skin expansion in reconstructive surgery , 2011 .