Penicillin resistance compromises Nod1-dependent proinflammatory activity and virulence fitness of neisseria meningitidis.

[1]  A. Aderem,et al.  Cross-interference of RLR and TLR signaling pathways modulates antibacterial T cell responses , 2012, Nature Immunology.

[2]  M. Nicola,et al.  Experimental Meningococcal Sepsis in Congenic Transgenic Mice Expressing Human Transferrin , 2011, PloS one.

[3]  S. Akira,et al.  Viral infection augments Nod1/2 signaling to potentiate lethality associated with secondary bacterial infections. , 2011, Cell host & microbe.

[4]  I. Comas,et al.  Human Macrophage Responses to Clinical Isolates from the Mycobacterium tuberculosis Complex Discriminate between Ancient and Modern Lineages , 2011, PLoS pathogens.

[5]  D. Podolsky,et al.  Identification of Drosophila Yin and PEPT2 as Evolutionarily Conserved Phagosome-associated Muramyl Dipeptide Transporters , 2010, The Journal of Biological Chemistry.

[6]  D. Philpott,et al.  Neutrophil migration during liver injury is under nucleotide-binding oligomerization domain 1 control. , 2010, Gastroenterology.

[7]  C. Whitchurch,et al.  Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells , 2010, Cellular microbiology.

[8]  R. Medzhitov,et al.  Influenza virus-induced glucocorticoids compromise innate host defense against a secondary bacterial infection. , 2010, Cell host & microbe.

[9]  D. Philpott,et al.  pH-dependent Internalization of Muramyl Peptides from Early Endosomes Enables Nod1 and Nod2 Signaling* , 2009, The Journal of Biological Chemistry.

[10]  S. van der Werf,et al.  Influenza A Virus Neuraminidase Enhances Meningococcal Adhesion to Epithelial Cells through Interaction with Sialic Acid-Containing Meningococcal Capsules , 2009, Infection and Immunity.

[11]  James T. Park,et al.  How Bacteria Consume Their Own Exoskeletons (Turnover and Recycling of Cell Wall Peptidoglycan) , 2008, Microbiology and Molecular Biology Reviews.

[12]  A. Deghmane,et al.  Hyperinvasive genotypes of Neisseria meningitidis in France. , 2008, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[13]  Keith A. Jolley,et al.  Target Gene Sequencing To Characterize the Penicillin G Susceptibility of Neisseria meningitidis , 2007, Antimicrobial Agents and Chemotherapy.

[14]  M. Prevost,et al.  A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system , 2007, Proceedings of the National Academy of Sciences.

[15]  M. Taha,et al.  Differential Role of Lipooligosaccharide of Neisseria meningitidis in Virulence and Inflammatory Response during Respiratory Infection in Mice , 2006, Infection and Immunity.

[16]  M. Lipsitch,et al.  Incremental increase in fitness cost with increased beta -lactam resistance in pneumococci evaluated by competition in an infant rat nasal colonization model. , 2006, The Journal of infectious diseases.

[17]  S. Varambally,et al.  Nod1 acts as an intracellular receptor to stimulate chemokine production and neutrophil recruitment in vivo , 2006, The Journal of experimental medicine.

[18]  J. Bertin,et al.  Murine Nod1 but not its human orthologue mediates innate immune detection of tracheal cytotoxin , 2005, EMBO reports.

[19]  Y. Nakagawa,et al.  hPepT1 transports muramyl dipeptide, activating NF-kappaB and stimulating IL-8 secretion in human colonic Caco2/bbe cells. , 2004, Gastroenterology.

[20]  John Bertin,et al.  Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island , 2004, Nature Immunology.

[21]  D. Philpott,et al.  Toll‐like receptor 2‐dependent bacterial sensing does not occur via peptidoglycan recognition , 2004, EMBO reports.

[22]  M. Taha,et al.  Continuing Diversification of Neisseria meningitidis W135 as a Primary Cause of Meningococcal Disease after Emergence of the Serogroup in 2000 , 2004, Journal of Clinical Microbiology.

[23]  D. Stephens,et al.  Neisseria meningitidis Lipooligosaccharide Structure-Dependent Activation of the Macrophage CD14/Toll-Like Receptor 4 Pathway , 2004, Infection and Immunity.

[24]  P. Kriz,et al.  Interlaboratory Comparison of Agar Dilution and Etest Methods for Determining the MICs of Antibiotics Used in Management of Neisseria meningitidis Infections , 2003, Antimicrobial Agents and Chemotherapy.

[25]  A. Namane,et al.  Correlation between Alterations of the Penicillin-binding Protein 2 and Modifications of the Peptidoglycan Structure in Neisseria meningitidis with Reduced Susceptibility to Penicillin G* , 2003, Journal of Biological Chemistry.

[26]  A. Labigne,et al.  Detailed Structural Analysis of the Peptidoglycan of the Human Pathogen Neisseria meningitidis* , 2003, Journal of Biological Chemistry.

[27]  J. Bertin,et al.  Nod1 Detects a Unique Muropeptide from Gram-Negative Bacterial Peptidoglycan , 2003, Science.

[28]  F. Ramisse,et al.  A model of meningococcal bacteremia after respiratory superinfection in influenza A virus-infected mice. , 2003, FEMS microbiology letters.

[29]  M. Chamaillard,et al.  Nod2 Is a General Sensor of Peptidoglycan through Muramyl Dipeptide (MDP) Detection* , 2003, The Journal of Biological Chemistry.

[30]  Christoph M Tang,et al.  Functional genomics of Neisseria meningitidis pathogenesis , 2000, Nature Medicine.

[31]  M. Achtman,et al.  Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  W. Scheld,et al.  Treatment of bacterial meningitis. , 1997, The New England journal of medicine.

[33]  X. Nassif,et al.  The pilA regulatory gene modulates the pilus‐mediated adhesion of Neisseria meningitidis by controlling the transcription of pilC1 , 1996, Molecular microbiology.

[34]  T. Romeis,et al.  Specific interaction of penicillin-binding proteins 3 and 7/8 with soluble lytic transglycosylase in Escherichia coli. , 1994, The Journal of biological chemistry.

[35]  R. Jones,et al.  E test as susceptibility test and epidemiologic tool for evaluation of Neisseria meningitidis isolates , 1993, Journal of clinical microbiology.

[36]  M. Maiden Population genetics of a transformable bacterium: the influence of horizontal genetic exchange on the biology of Neisseria meningitidis. , 1993, FEMS microbiology letters.

[37]  B. Spratt,et al.  Role of interspecies transfer of chromosomal genes in the evolution of penicillin resistance in pathogenic and commensal Neisseria species , 1992, Journal of Molecular Evolution.

[38]  B. Spratt,et al.  Penicillin‐binding protein 2 genes of non‐β‐lactamase‐producing, penicillin‐resistant strains of Neisseria gonorrhoeae , 1989, Molecular microbiology.

[39]  B. Spratt,et al.  Penicillin-binding proteins of gram-negative bacteria. , 1988, Reviews of infectious diseases.

[40]  D. Brahams AIDS in the United States: Education and Litigation , 1988, The Lancet.

[41]  P. Botha PENICILLIN-RESISTANT NEISSERIA MENINGITIDIS IN SOUTHERN AFRICA , 1988, The Lancet.

[42]  K. Cartwright,et al.  The Stonehouse survey: nasopharyngeal carriage of meningococci and Neisseria lactamica , 1987, Epidemiology and Infection.

[43]  J. Dillon,et al.  SPREAD OF PENICILLINASE-PRODUCING AND TRANSFER PLASMIDS FROM THE GONOCOCCUS TO NEISSERIA MENINGITIDIS , 1983, The Lancet.

[44]  R. Sinha,et al.  Release of soluble peptidoglycan from growing conococci: demonstration of anhydro-muramyl-containing fragments , 1980, Infection and immunity.

[45]  Douglas S. Kellogg,et al.  NEISSERIA GONORRHOEAE I , 1963, Journal of bacteriology.

[46]  A. Tomasz,et al.  Penicillin-binding protein families: evidence for the clonal nature of penicillin resistance in clinical isolates of pneumococci. , 1989, The Journal of infectious diseases.

[47]  W. Goldman,et al.  Bordetella pertussis tracheal cytotoxin. , 1985, Developments in biological standardization.