Optimal Control in a Novel Computer Virus Spread Model

This paper proposes a computer virus spread model with optimal control, which is intended to keep low both infected nodes and systemic cost levels. The existence and uniqueness of the results concerning the optimality system are proved. Finally, numerical results show that the spread of computer virus can be controlled effectively with proper control strategy.

[1]  Fred Cohen,et al.  Computer viruses—theory and experiments , 1990 .

[2]  S. Lenhart,et al.  OPTIMIZING CHEMOTHERAPY IN AN HIV MODEL , 1998 .

[3]  B. Heimann,et al.  Fleming, W. H./Rishel, R. W., Deterministic and Stochastic Optimal Control. New York‐Heidelberg‐Berlin. Springer‐Verlag. 1975. XIII, 222 S, DM 60,60 , 1979 .

[4]  Jeffrey O. Kephart,et al.  Measuring and modeling computer virus prevalence , 1993, Proceedings 1993 IEEE Computer Society Symposium on Research in Security and Privacy.

[5]  Hua Yuan,et al.  Network virus-epidemic model with the point-to-group information propagation , 2008, Appl. Math. Comput..

[6]  David J. Marchette,et al.  Modeling computer virus prevalence with a susceptible-infected-susceptible model with reintroduction , 2004, Comput. Stat. Data Anal..

[7]  William M. Spears,et al.  A unified prediction of computer virus spread in connected networks , 2002 .

[8]  Yong Han Kang,et al.  Stability analysis and optimal vaccination of an SIR epidemic model , 2008, Biosyst..

[9]  Bimal Kumar Mishra,et al.  Fixed period of temporary immunity after run of anti-malicious software on computer nodes , 2007, Appl. Math. Comput..

[10]  José Roberto Castilho Piqueira,et al.  A modified epidemiological model for computer viruses , 2009, Appl. Math. Comput..

[11]  Jeffrey O. Kephart,et al.  Directed-graph epidemiological models of computer viruses , 1991, Proceedings. 1991 IEEE Computer Society Symposium on Research in Security and Privacy.

[12]  Luiz Henrique Alves Monteiro,et al.  Epidemiological Models Applied to Viruses in Computer Networks , 2005 .

[13]  M. Petit Dynamic optimization. The calculus of variations and optimal control in economics and management : by Morton I. Kamien and Nancy L. Schwartz. Second Edition. North-Holland (Advanced Textbooks in Economics), Amsterdam and New York, 1991. Pp. xvii+377. ISBN0-444- 01609-0 , 1994 .

[14]  Xie Han,et al.  Dynamical behavior of computer virus on Internet , 2010, Appl. Math. Comput..

[15]  José Roberto Castilho Piqueira,et al.  Dynamic models for computer viruses , 2008, Comput. Secur..

[16]  Yong Han Kang,et al.  Optimal vaccination and treatment in the SIR epidemic model , 2007 .

[17]  Yong Han Kang,et al.  Optimal treatment of an SIR epidemic model with time delay , 2009, Biosyst..