Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating.

In conventional photovoltaic solar cells, photogenerated carriers are extracted by the built-in electric field of a semiconductor PN junction, defined by ionic dopants. In atomically thin semiconductors, the doping level can be controlled by the field effect, enabling the implementation of electrically tunable PN junctions. However, most two-dimensional (2D) semiconductors do not show ambipolar transport, which is necessary to realize PN junctions. Few-layer black phosphorus (b-P) is a recently isolated 2D semiconductor with direct bandgap, high mobility, large current on/off ratios and ambipolar operation. Here we fabricate few-layer b-P field-effect transistors with split gates and hexagonal boron nitride dielectric. We demonstrate electrostatic control of the local charge carrier type and density in the device. Illuminating a gate-defined PN junction, we observe zero-bias photocurrents and significant open-circuit voltages due to the photovoltaic effect. The small bandgap of the material allows power generation for illumination wavelengths up to 940 nm, attractive for energy harvesting in the near-infrared.

[1]  P. Jarillo-Herrero,et al.  Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. , 2013, Nature nanotechnology.

[2]  Large and tunable photothermoelectric effect in single-layer MoS2. , 2013, Nano letters.

[3]  Andres Castellanos-Gomez,et al.  Elastic Properties of Freely Suspended MoS2 Nanosheets , 2012, Advanced materials.

[4]  A. Ortiz-Conde,et al.  Exact analytical solutions of the forward non-ideal diode equation with series and shunt parasitic resistances , 2000 .

[5]  N. Agraït,et al.  Atomically thin mica flakes and their application as ultrathin insulating substrates for graphene. , 2011, Small.

[6]  Jun Dai,et al.  Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells. , 2014, The journal of physical chemistry letters.

[7]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[8]  Richard H. Bube,et al.  Photoelectronic Properties of Semiconductors , 1992 .

[9]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[10]  R. Soklaski,et al.  Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus , 2014 .

[11]  Vibhor Singh,et al.  Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping , 2013, 1311.4829.

[12]  M. Terrones,et al.  Photosensor Device Based on Few‐Layered WS2 Films , 2013 .

[13]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[14]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[15]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. , 2014, Nature communications.

[16]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[17]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[18]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[20]  K. Ng,et al.  The Physics of Semiconductor Devices , 2019, Springer Proceedings in Physics.

[21]  A. H. Castro Neto,et al.  Electric field effect in ultrathin black phosphorus , 2014 .

[22]  T. Mueller,et al.  Solar-energy conversion and light emission in an atomic monolayer p-n diode. , 2013, Nature Nanotechnology.

[23]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[24]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[25]  S. Min,et al.  MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. , 2012, Nano letters.

[26]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[27]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[28]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[29]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[30]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[31]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[32]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[33]  R. Soklaski,et al.  Layer-Controlled Band Gap and Anisotropic Excitons in Phosphorene , 2014, 1402.4192.

[34]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[35]  X. Kong,et al.  Few-layer black phosphorus: emerging direct band gap semiconductor with high carrier mobility , 2014 .

[36]  G. Steele,et al.  Isolation and characterization of few-layer black phosphorus , 2014, 1403.0499.

[37]  A. Neto,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. , 2013 .

[38]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[39]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[40]  P. Kim,et al.  Performance of monolayer graphene nanomechanical resonators with electrical readout. , 2009, Nature nanotechnology.