The effect of different stopping criteria on multi-objective optimization algorithms

Evolutionary multi-objective optimization (EMO) refers to the domain in which an evolutionary algorithm is applied to tackle an optimization problem with multiple objective functions. The literature is rich with many approaches proposed to solve multi-objective problems including the NSGA-II, MOEA/D, and MOPSO algorithms. The proposed approaches include stand-alone as well as hybrid techniques. One critical aspect of any evolutionary algorithm (EA) is the stopping criterion. The selection of a specific stopping criterion can have a considerable effect on the performance and the final solution provided by the EA. A number of different stopping criteria, specifically designed for EMO, have been proposed in the literature. In this paper, the performance of six different EMO algorithms is tested and compared using four stopping criteria. The experiments are performed using the ZDT, DTLZ, CEC2009, Tanaka and Srivana test functions. Experimental results are analyzed to highlight the proper stopping criteria for different algorithms.

[1]  Kalyanmoy Deb,et al.  A Hybrid Framework for Evolutionary Multi-Objective Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[2]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[3]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[4]  Jesús García,et al.  An approach to stopping criteria for multi-objective optimization evolutionary algorithms: The MGBM criterion , 2009, 2009 IEEE Congress on Evolutionary Computation.

[5]  Walter J. Gutjahr,et al.  Stochastic multi-objective optimization: a survey on non-scalarizing methods , 2016, Ann. Oper. Res..

[6]  Jean Bigeon,et al.  Performance indicators in multiobjective optimization , 2018, Eur. J. Oper. Res..

[7]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[8]  Jesús García,et al.  A progress indicator for detecting success and failure in evolutionary multi-objective optimization , 2010, IEEE Congress on Evolutionary Computation.

[9]  Heike Trautmann,et al.  Online convergence detection for evolutionary multi-objective algorithms revisited , 2010, IEEE Congress on Evolutionary Computation.

[10]  Kalyanmoy Deb,et al.  Handling many-objective problems using an improved NSGA-II procedure , 2012, 2012 IEEE Congress on Evolutionary Computation.

[11]  Gade Pandu Rangaiah,et al.  Design of shell-and-tube heat exchangers for multiple objectives using elitist non-dominated sorting genetic algorithm with termination criteria , 2016 .

[12]  Gade Pandu Rangaiah,et al.  An improved multi-objective differential evolution with a termination criterion for optimizing chemical processes , 2013, Comput. Chem. Eng..

[13]  Junzhong Ji,et al.  A New Diversity Maintenance Strategy based on the Double Granularity Grid for Multiobjective Optimization , 2020, ICPRAM.

[14]  Kalyanmoy Deb,et al.  Improving convergence of evolutionary multi-objective optimization with local search: a concurrent-hybrid algorithm , 2011, Natural Computing.

[15]  Saúl Zapotecas Martínez,et al.  A direct local search mechanism for decomposition-based multi-objective evolutionary algorithms , 2012, 2012 IEEE Congress on Evolutionary Computation.

[16]  Eckart Zitzler,et al.  Evolutionary multiobjective optimization , 2007, GECCO '07.

[17]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[18]  Mohammed A. Awadallah,et al.  Community detection in complex networks using multi-objective bat algorithm , 2020 .

[19]  Jesús García,et al.  A stopping criterion for multi-objective optimization evolutionary algorithms , 2016, Inf. Sci..

[20]  Abd Allah A. Mousa,et al.  A New Hybrid Metaheuristic Algorithm for Multiobjective Optimization Problems , 2020, Int. J. Comput. Intell. Syst..

[21]  Qingfu Zhang,et al.  Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition , 2009 .

[22]  Iyad Abu Doush,et al.  The Hybrid Framework for Multi-objective Evolutionary Optimization Based on Harmony Search Algorithm , 2017 .

[23]  Lakhmi C. Jain,et al.  Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[24]  Antonio J. Nebro,et al.  jMetal: A Java framework for multi-objective optimization , 2011, Adv. Eng. Softw..

[25]  Iyad Abu Doush,et al.  On Different Stopping Criteria for Multi-objective Harmony Search Algorithms , 2019 .

[26]  Mohammed A. Awadallah,et al.  Novel selection schemes for harmony search , 2012, Appl. Math. Comput..

[27]  Qingfu Zhang,et al.  Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighborhood Sizes , 2012, IEEE Transactions on Evolutionary Computation.

[28]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[29]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[30]  Benjamín Barán,et al.  Multiobjective Harmony Search Algorithm Proposals , 2011, CLEI Selected Papers.

[31]  Kaisa Miettinen,et al.  A two-slope achievement scalarizing function for interactive multiobjective optimization , 2012, Comput. Oper. Res..

[32]  Mohaideen Abdul Kadhar Kappuva,et al.  A stopping criterion for decomposition-based multi-objective evolutionary algorithms , 2018, Soft Comput..

[33]  Gade Pandu Rangaiah,et al.  Multi-Objective Optimization Applications in Chemical Process Engineering: Tutorial and Review , 2020, Processes.

[34]  K. Lee,et al.  A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice , 2005 .

[35]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[36]  Arnapurna Panda,et al.  A Symbiotic Organisms Search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems , 2016, Appl. Soft Comput..

[37]  Heike Trautmann,et al.  A Taxonomy of Online Stopping Criteria for Multi-Objective Evolutionary Algorithms , 2011, EMO.

[38]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[39]  D. Toghraie,et al.  Multi-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systems , 2017 .

[40]  Heike Trautmann,et al.  2 Indicator-Based Multiobjective Search , 2015, Evolutionary Computation.

[41]  Iyad Abu Doush,et al.  Hybedrized NSGA-II and MOEA/D with Harmony Search Algorithm to Solve Multi-objective Optimization Problems , 2015, ICONIP.

[42]  Qingfu Zhang,et al.  The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances , 2009, 2009 IEEE Congress on Evolutionary Computation.

[43]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[44]  Jesús García,et al.  A cumulative evidential stopping criterion for multiobjective optimization evolutionary algorithms , 2007, GECCO.