A new efficient primal dual simplex algorithm

The purpose of this paper is to present a revised primal dual simplex algorithm (RPDSA) for linear programming problems. RPDSA has interesting theoretical properties. The advantages of the new algorithm are the simplicity of implementation, low computational overhead and surprisingly good computational performance. The algorithm can be combined with interior point methods to move from an interior point to a basic optimal solution. The new algorithm always proved to be more efficient than the classical simplex algorithm on our test problems. Numerical experiments on randomly generated sparse linear problems are presented to verify the practical value of RPDSA. The results are very promising. In particular, they reveal that RPDSA is up to 146 times faster in terms of number of iterations and 94 times faster in terms of CPU time than the original simplex algorithm (SA) on randomly generated problems of size 1200 × 1200 and density 2.5%.

[1]  Y. Ye,et al.  Combining Interior-Point and Pivoting Algorithms for Linear Programming , 1996 .

[2]  H. Eickhoff,et al.  Mikroskopische Untersuchungen über die Innervation von Kehlkopfkrebsen , 1954 .

[3]  Tamás Terlaky,et al.  A Monotonic Build-Up Simplex Algorithm for Linear Programming , 1994, Oper. Res..

[4]  V. Klee,et al.  HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .

[5]  K. G. Murty,et al.  Review of recent development: A feasible direction method for linear programming , 1984 .

[6]  Karl-Heinz Borgwardt,et al.  The Average number of pivot steps required by the Simplex-Method is polynomial , 1982, Z. Oper. Research.

[7]  Panos M. Pardalos,et al.  The simplex algorithm with a new primal and dual pivot rule , 1994, Oper. Res. Lett..

[8]  Konstantinos Paparrizos,et al.  An efficient simplex type algorithm for sparse and dense linear programs , 2003, Eur. J. Oper. Res..

[9]  Konstantinos Paparrizos An exterior point simplex algorithm for (general) linear programming problems , 1993, Ann. Oper. Res..

[10]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[11]  Karl Heinz Borgwardt,et al.  Some Distribution-Independent Results About the Asymptotic Order of the Average Number of Pivot Steps of the Simplex Method , 1982, Math. Oper. Res..

[12]  Konstantinos Paparrizos,et al.  An infeasible (exterior point) simplex algorithm for assignment problems , 1991, Math. Program..

[13]  Jacek Gondzio,et al.  Multiple centrality corrections in a primal-dual method for linear programming , 1996, Comput. Optim. Appl..

[14]  Roy E. Marsten,et al.  On Implementing Mehrotra's Predictor-Corrector Interior-Point Method for Linear Programming , 1992, SIAM J. Optim..

[15]  Shuzhong Zhang,et al.  Pivot rules for linear programming: A survey on recent theoretical developments , 1993, Ann. Oper. Res..

[16]  Norman D. Curet,et al.  A primal-dual simplex method for linear programs , 1993, Oper. Res. Lett..

[17]  Konstantinos Dosios,et al.  Resolution of the problem of degeneracy in a primal and dual simplex algorithm , 1997, Oper. Res. Lett..

[18]  Nimrod Megiddo,et al.  On Finding Primal- and Dual-Optimal Bases , 1991, INFORMS J. Comput..