Quantification of errors for operator-split advection–diffusion calculations
暂无分享,去创建一个
Carol S. Woodward | Jeffrey W. Banks | Jeffrey Hittinger | Jeffrey M. Connors | C. Woodward | J. Banks | J. Connors | J. Hittinger
[1] Chi-Wang Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .
[2] John N. Shadid,et al. Stability of operator splitting methods for systems with indefinite operators: Advection-diffusion-reaction systems , 2009, J. Comput. Phys..
[3] David L. Darmofal,et al. Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics: Overview and Recent Results , 2009 .
[4] Philip John Binning,et al. A split operator approach to reactive transport with the forward particle tracking Eulerian Lagrangian localized adjoint method , 2004 .
[5] M. Giles,et al. Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.
[6] Randall J. LeVeque,et al. Numerical methods based on additive splittings for hyperbolic partial differential equations , 1981 .
[7] Zhuyin Ren,et al. Efficient Implementation of Chemistry in Computational Combustion , 2009 .
[8] John N. Shadid,et al. An A Posteriori-A Priori Analysis of Multiscale Operator Splitting , 2008, SIAM J. Numer. Anal..
[9] G. Marchuk,et al. Adjoint Equations and Perturbation Algorithms in Nonlinear Problems , 1996 .
[10] Tim Wildey,et al. A posteriori error estimation and adaptive mesh refinement for a multiscale operator decomposition approach to fluid – solid heat transfer , 2010 .
[11] L. G. Stern,et al. Fractional step methods applied to a chemotaxis model , 2000, Journal of mathematical biology.
[12] Ralf Hartmann,et al. Adaptive Discontinuous Galerkin Finite Element Methods for Nonlinear Hyperbolic Conservation Laws , 2002, SIAM J. Sci. Comput..
[13] Donald Estep,et al. A posteriori error analysis of multiscale operator decomposition methods for multiphysics models , 2008 .
[14] P. Lax,et al. Difference schemes for hyperbolic equations with high order of accuracy , 1964 .
[15] D. Estep,et al. A posteriori error analysis for a cut cell finite volume method , 2011 .
[16] J. Crank,et al. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type , 1947 .
[17] W. Collins,et al. Description of the NCAR Community Atmosphere Model (CAM 3.0) , 2004 .
[18] Haiying Wang,et al. Journal of Computational and Applied Mathematics a Posteriori Error Analysis of a Cell-centered Finite Volume Method for Semilinear Elliptic Problems , 2022 .
[19] S. Orszag,et al. High-order splitting methods for the incompressible Navier-Stokes equations , 1991 .
[20] Simon Tavener,et al. A Posteriori Analysis and Adaptive Error Control for Multiscale Operator Decomposition Solution of Elliptic Systems I: Triangular Systems , 2008, SIAM J. Numer. Anal..
[21] R. Hartmann,et al. Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .
[22] J. Geiser,et al. Consistency of iterative operator‐splitting methods: Theory and applications , 2010 .
[23] Roy D. Williams,et al. Estimating the Error of Numerical Solutions of Systems of Reaction-Diffusion Equations , 2000 .
[24] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[25] Su Zhao,et al. Operator splitting implicit integration factor methods for stiff reaction-diffusion-advection systems , 2011, J. Comput. Phys..
[26] M. L. Norman,et al. Simulating Radiating and Magnetized Flows in Multiple Dimensions with ZEUS-MP , 2005, astro-ph/0511545.
[27] N. N. Yanenko,et al. The Method of Fractional Steps , 1971 .
[28] Einar M. Rønquist,et al. An Operator-integration-factor splitting method for time-dependent problems: Application to incompressible fluid flow , 1990 .
[29] Mats G. Larson,et al. A posteriori eror estimation for higher order Godunov finite volume methods on unstructured meshes , 2002 .
[30] Charles R. Doering,et al. A Fast Explicit Operator Splitting Method for Passive Scalar Advection , 2010, J. Sci. Comput..
[31] J. Verwer,et al. Analysis of operator splitting for advection-diffusion-reaction problems from air pollution modelling , 1999 .
[32] David I. Gottlieb,et al. The Theoretical Accuracy of Runge-Kutta Time Discretizations for the Initial Boundary Value Problem: A Study of the Boundary Error , 1995, SIAM J. Sci. Comput..
[33] Jeffrey A. F. Hittinger,et al. A Method to Calculate Numerical Errors Using Adjoint Error Estimation for Linear Advection , 2013, SIAM J. Numer. Anal..