Fuzzy multi-period portfolio selection optimization models using multiple criteria

To simulate the real transactions in financial market, multiple decision criteria in portfolio selection should be considered to provide investors with additional choices. This paper deals with multi-period portfolio selection problems in fuzzy environment by considering some or all criteria, including return, transaction cost, risk and skewness of portfolio. Two possibilistic portfolio optimization models by using multiple criteria are first presented for the basic multi-period portfolio selection problem. Then, they are naturally extended to dynamic feedback models with closed-loop control policies. A TOPSIS-compromised programming approach is designed originally to transform the proposed models into single objective models. After that, a genetic algorithm is devised for obtaining optimal solutions. Furthermore, a numerical example is given to illustrate the advantage of the proposed models and the efficiency of the designed algorithm over the existing approaches.

[1]  Xiaojun Wu,et al.  Solving the multi-stage portfolio optimization problem with a novel particle swarm optimization , 2011, Expert Syst. Appl..

[2]  Mitsuo Gen,et al.  Genetic algorithms and engineering design , 1997 .

[3]  Weijun Xu,et al.  A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs , 2012, Eur. J. Oper. Res..

[4]  Xiaoxia Huang,et al.  Mean-risk model for uncertain portfolio selection , 2011, Fuzzy Optim. Decis. Mak..

[5]  Süleyman Özekici,et al.  Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach , 2007, Eur. J. Oper. Res..

[6]  J. N. Sheen,et al.  Fuzzy Financial Profitability Analyses of Demand Side Management Alternatives , 2005, 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific.

[7]  Giuseppe Carlo Calafiore,et al.  An Affine Control Method for Optimal Dynamic Asset Allocation with Transaction Costs , 2009, SIAM J. Control. Optim..

[8]  Vincent Godin Dynamic portfolio optimization across asset classes , 2007 .

[9]  Chang-Chun Lin,et al.  Genetic algorithms for portfolio selection problems with minimum transaction lots , 2008, Eur. J. Oper. Res..

[10]  Masahiro Inuiguchi,et al.  Portfolio selection under independent possibilistic information , 2000, Fuzzy Sets Syst..

[11]  Shu-zhi Wei,et al.  Multi-period optimization portfolio with bankruptcy control in stochastic market , 2007, Appl. Math. Comput..

[12]  Mahmoud A. Abo-Sinna,et al.  Extensions of TOPSIS for multi-objective large-scale nonlinear programming problems , 2005, Appl. Math. Comput..

[13]  J. Mossin Optimal multiperiod portfolio policies , 1968 .

[14]  Shouyang Wang,et al.  Risk control over bankruptcy in dynamic portfolio selection: a generalized mean-variance formulation , 2004, IEEE Transactions on Automatic Control.

[15]  Wei-guo Zhang,et al.  A risk tolerance model for portfolio adjusting problem with transaction costs based on possibilistic moments , 2010 .

[16]  H. Carter Fuzzy Sets and Systems — Theory and Applications , 1982 .

[17]  Wei-Guo Zhang,et al.  Notes on possibilistic variances of fuzzy numbers , 2007, Appl. Math. Lett..

[18]  A. Saeidifar,et al.  The possibilistic moments of fuzzy numbers and their applications , 2009 .

[19]  Oswaldo Luiz V. Costa,et al.  A generalized multi-period mean-variance portfolio optimization with Markov switching parameters , 2008, Autom..

[20]  Valerio Lacagnina,et al.  A stochastic soft constraints fuzzy model for a portfolio selection problem , 2006, Fuzzy Sets Syst..

[21]  Andrew E. B. Lim,et al.  Dynamic Mean-Variance Portfolio Selection with No-Shorting Constraints , 2001, SIAM J. Control. Optim..

[22]  Ralf Östermark,et al.  A fuzzy control model (FCM) for dynamic portfolio management , 1996, Fuzzy Sets Syst..

[23]  Silvio Giove,et al.  An interval portfolio selection problem based on regret function , 2006, Eur. J. Oper. Res..

[24]  Giuseppe Carlo Calafiore,et al.  Multi-period portfolio optimization with linear control policies , 2008, Autom..

[25]  Anthony Chen,et al.  Constraint handling in genetic algorithms using a gradient-based repair method , 2006, Comput. Oper. Res..

[26]  Duan Li,et al.  Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation , 2000 .

[27]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[28]  Nalan Gülpinar,et al.  Worst-case robust decisions for multi-period mean-variance portfolio optimization , 2007, Eur. J. Oper. Res..

[29]  Jian-Bo Yang,et al.  Minimax reference point approach and its application for multiobjective optimisation , 2000, Eur. J. Oper. Res..

[30]  Ichiro Nishizaki,et al.  An interactive fuzzy satisficing method for multiobjective stochastic linear programming problems through an expectation model , 2003, Eur. J. Oper. Res..

[31]  A. Charnes,et al.  Management Models and Industrial Applications of Linear Programming , 1961 .

[32]  Christer Carlsson,et al.  A Possibilistic Approach to Selecting Portfolios with Highest Utility Score , 2001, Fuzzy Sets Syst..

[33]  Teresa León,et al.  Viability of infeasible portfolio selection problems: A fuzzy approach , 2002, Eur. J. Oper. Res..

[34]  Abo Sinna,et al.  EXTENSIONS OF TOPSIS FOR MULTIOBJECTIVE LARGE-SCALE NONLINEAR PROGRAMMING PROBLEMS , 2005 .

[35]  Xiaoxia Huang,et al.  Mean-Entropy Models for Fuzzy Portfolio Selection , 2008, IEEE Transactions on Fuzzy Systems.

[36]  Seyed Jafar Sadjadi,et al.  Fuzzy multi period portfolio selection with different rates for borrowing and lending , 2011, Appl. Soft Comput..

[37]  Wei-guo Zhang,et al.  A possibilistic portfolio adjusting model with new added assets , 2010 .

[38]  H. Zimmermann Fuzzy programming and linear programming with several objective functions , 1978 .

[39]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[40]  Duan Li,et al.  Safety-first dynamic portfolio selection , 1998 .

[41]  Tak Kuen Siu,et al.  Optimal portfolios with regime switching and value-at-risk constraint , 2010, Autom..

[42]  X. Zhou,et al.  Continuous-Time Mean-Variance Portfolio Selection: A Stochastic LQ Framework , 2000 .

[43]  Satoru Takahashi,et al.  Dynamic portfolio optimization with risk control for absolute deviation model , 2010, Eur. J. Oper. Res..

[44]  Christer Carlsson,et al.  On Possibilistic Mean Value and Variance of Fuzzy Numbers , 1999, Fuzzy Sets Syst..

[45]  CalafioreGiuseppe Carlo Multi-period portfolio optimization with linear control policies , 2008 .

[46]  Kin Keung Lai,et al.  Decision Aiding Portfolio rebalancing model with transaction costs based on fuzzy decision theory , 2005 .

[47]  N. H. Hakansson. MULTI-PERIOD MEAN-VARIANCE ANALYSIS: TOWARD A GENERAL THEORY OF PORTFOLIO CHOICE* , 1971 .

[48]  Pruettha Nanakorn,et al.  An adaptive penalty function in genetic algorithms for structural design optimization , 2001 .

[49]  Dimitris Bertsimas,et al.  Robust multiperiod portfolio management in the presence of transaction costs , 2008, Comput. Oper. Res..

[50]  Shouyang Wang,et al.  On Fuzzy Portfolio Selection Problems , 2002, Fuzzy Optim. Decis. Mak..