Long-range ordering of block copolymer cylinders driven by combining thermal annealing and substrate functionalization.

This work presents a new method for forming well-defined nanostructured thin films from self-assembled polystyrene-block-poly(l-lactide) (PS-PLLA) on Si wafers with a functionalized SiO2 surface. Large, well-ordered, perpendicular PLLA cylinders in PS-PLLA thin films can be formed using the functionalized substrate. In contrast to random copolymers, a neutral substrate for the PS and PLLA blocks is formed by functionalizing a substrate with hydroxyl-terminated PS (PS-OH) followed by hydroxyl-terminated PLLA (PLLA-OH). The heterogeneous grafting of PS-OH and PLLA-OH can be substantially alleviated using this two-step functionalization. Accordingly, the surface properties can be fine-tuned by controlling the ratio of grafted PS-OH to PLLA-OH to control the orientation of the PLLA cylinders on the functionalized SiO2. Nevertheless, the orientation that is driven by the neutral substrate is surprisingly limited in that the effective length of orienting cylinders is less than twice the interdomain spacing. Thermal annealing at high temperature can yield a neutral air surface, rendering perpendicular PLLA cylinders that stand sub-micrometers from the air surface. Consequently, the neutral substrate can be used to enable truly film-spanning perpendicular cylinders in films to be fabricated using the high-temperature thermal treatment. In addition, the perpendicular cylinders can be laterally ordered by further increasing the annealing temperature. The ability to create these film-spanning perpendicular cylinders in films with a well-ordered texture and sub-micrometer thickness opens up possible applications in nanotechnology.

[1]  T. Hashimoto,et al.  Cylindrical Domains of Block Copolymers Developed via Ordering under Moving Temperature Gradient: Real-Space Analysis , 2008 .

[2]  I. Manners,et al.  Spontaneous Vertical Ordering and Pyrolytic Formation of Nanoscopic Ceramic Patterns from Poly(styrene‐b‐ferrocenylsilane) , 2003 .

[3]  S. Mochrie,et al.  Polymers on Nanoperiodic, Heterogeneous Surfaces , 1999 .

[4]  Joel K. W. Yang,et al.  Graphoepitaxy of Self-Assembled Block Copolymers on Two-Dimensional Periodic Patterned Templates , 2008, Science.

[5]  C. Hawker,et al.  Controlling Polymer-Surface Interactions with Random Copolymer Brushes , 1997, Science.

[6]  Jeffrey N. Murphy,et al.  Density doubling of block copolymer templated features. , 2012, Nano letters.

[7]  Bao-Tsan Ko,et al.  Solvent-induced microdomain orientation in polystyrene-b-poly(l-lactide) diblock copolymer thin films for nanopatterning , 2005 .

[8]  Frank Simon,et al.  Synthesis of Adaptive Polymer Brushes via “Grafting To” Approach from Melt , 2002 .

[9]  G. Fredrickson,et al.  Block copolymer thermodynamics: theory and experiment. , 1990, Annual review of physical chemistry.

[10]  H. Jaeger,et al.  Local Control of Microdomain Orientation in Diblock Copolymer Thin Films with Electric Fields , 1996, Science.

[11]  D. K. Owens,et al.  Estimation of the surface free energy of polymers , 1969 .

[12]  Shouwu Guo,et al.  Perpendicular Domain Orientation in Thin Films of Polystyrene−Polylactide Diblock Copolymers , 2005 .

[13]  Alexander Böker,et al.  Electric field alignment of a block copolymer nanopattern: direct observation of the microscopic mechanism. , 2009, ACS nano.

[14]  C. Hawker,et al.  Nanodomain control in copolymer thin films , 1998, Nature.

[15]  Soojin Park,et al.  Macroscopic 10-Terabit–per–Square-Inch Arrays from Block Copolymers with Lateral Order , 2009, Science.

[16]  R. Ho,et al.  Tubular Nanostructures from Degradable Core–Shell Cylinder Microstructures in Chiral Diblock Copolymers , 2006 .

[17]  Edwin L. Thomas,et al.  Microdomain patterns from directional eutectic solidification and epitaxy , 2000, Nature.

[18]  Craig J. Hawker,et al.  Interfacial Segregation in Disordered Block Copolymers: Effect of Tunable Surface Potentials , 1997 .

[19]  Craig J. Hawker,et al.  Using Surface Active Random Copolymers To Control the Domain Orientation in Diblock Copolymer Thin Films , 1998 .

[20]  E. Han,et al.  Perpendicular Orientation of Domains in Cylinder-Forming Block Copolymer Thick Films by Controlled Interfacial Interactions , 2009 .

[21]  G. Craig,et al.  Preparation of Neutral Wetting Brushes for Block Copolymer Films from Homopolymer Blends , 2008 .

[22]  Edwin L. Thomas,et al.  Solvent swelling of roll-cast triblock copolymer films , 1998 .

[23]  E. Kramer,et al.  Graphoepitaxy of Spherical Domain Block Copolymer Films , 2001 .

[24]  E. W. Edwards,et al.  Directed Assembly of Block Copolymer Blends into Nonregular Device-Oriented Structures , 2005, Science.

[25]  Julia A. Kornfield,et al.  Pathways to Macroscale Order in Nanostructured Block Copolymers , 1997 .

[26]  Soo-Jin Park,et al.  Solvent-Induced Transition from Micelles in Solution to Cylindrical Microdomains in Diblock Copolymer Thin Films , 2007 .

[27]  Chi-Chun Liu,et al.  Orientation of Block Copolymer Resists on Interlayer Dielectrics with Tunable Surface Energy , 2010 .

[28]  E. Thomas,et al.  Block copolymers with a twist. , 2009, Journal of the American Chemical Society.

[29]  Henry I. Smith,et al.  Fabrication of nanostructures with long-range order using block copolymer lithography , 2002 .

[30]  Jillian M. Buriak,et al.  Assembly of aligned linear metallic patterns on silicon , 2007, Nature Nanotechnology.

[31]  Matthew Libera,et al.  Morphological Development in Solvent-Cast Polystyrene−Polybutadiene−Polystyrene (SBS) Triblock Copolymer Thin Films , 1998 .

[32]  Jinan Chai,et al.  Using cylindrical domains of block copolymers to self-assemble and align metallic nanowires. , 2008, ACS nano.

[33]  Richard A. Register,et al.  Shear‐Induced Alignment in Thin Films of Spherical Nanodomains , 2005 .

[34]  Dong Hyun Lee,et al.  Highly ordered nanoporous template from triblock copolymer. , 2011, ACS nano.

[35]  Yoshinori Funaki,et al.  The Effect of Temperature Gradient on the Microdomain Orientation of Diblock Copolymers Undergoing an Order−Disorder Transition , 1999 .

[36]  Youn Jung Park,et al.  Ordered Ferroelectric PVDF−TrFE Thin Films by High Throughput Epitaxy for Nonvolatile Polymer Memory , 2008 .

[37]  E. W. Edwards,et al.  Precise Control over Molecular Dimensions of Block‐Copolymer Domains Using the Interfacial Energy of Chemically Nanopatterned Substrates , 2004 .

[38]  R. Ruiz,et al.  Density Multiplication and Improved Lithography by Directed Block Copolymer Assembly , 2008, Science.

[39]  R. Ho,et al.  Fabrication of Double‐Length‐Scale Patterns via Lithography, Block Copolymer Templating, and Electrodeposition , 2007 .

[40]  Paul F. Nealey,et al.  Using Self-Assembled Monolayers Exposed to X-rays To Control the Wetting Behavior of Thin Films of Diblock Copolymers , 2000 .

[41]  B. Lotz,et al.  Crystallization-induced orientation for microstructures of poly(L-lactide)-b-poly(epsilon-caprolactone) diblock copolymers , 2003 .

[42]  K. Guarini,et al.  Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. , 2000, Science.

[43]  K. W. Gotrik,et al.  Templating Three-Dimensional Self-Assembled Structures in Bilayer Block Copolymer Films , 2012, Science.

[44]  Joy Y. Cheng,et al.  Self-assembled one-dimensional nanostructure arrays. , 2006, Nano letters.

[45]  R. Ho,et al.  Three-dimensionally packed nanohelical phase in chiral block copolymers. , 2004, Journal of the American Chemical Society.

[46]  Soo-Jin Park,et al.  Lateral Ordering of Cylindrical Microdomains Under Solvent Vapor , 2009 .

[47]  Joy Y. Cheng,et al.  Nanostructure engineering by templated self-assembly of block copolymers , 2004, Nature materials.

[48]  Fajun Zhang,et al.  Competition of Lamellar Orientation in Thin Films of a Symmetric Poly(styrene)-b-poly(l-lactide) Diblock Copolymer in Melt State , 2007 .

[49]  R. Heap,et al.  Synthesis of Progesterone by the Mammary Gland of the Goat , 1970, Nature.

[50]  Jia-cong Shen,et al.  Protein immobilization on the surface of poly-L-lactic acid films for improvement of cellular interactions , 2002 .

[51]  T. Russell,et al.  Orienting block copolymer microdomains with block copolymer brushes. , 2012, ACS Nano.

[52]  Juan J de Pablo,et al.  Directed assembly of non-equilibrium ABA triblock copolymer morphologies on nanopatterned substrates. , 2012, ACS nano.

[53]  Kenji Fukunaga,et al.  Large-Scale Alignment of ABC Block Copolymer Microdomains via Solvent Vapor Treatment , 2000 .

[54]  Jongseung Yoon,et al.  Enabling nanotechnology with self assembled block copolymer patterns , 2003 .

[55]  P. Chaikin,et al.  Shear-induced sphere-to-cylinder transition in diblock copolymer thin films , 2009 .

[56]  E. Pedemonte,et al.  Macro lattice from segregated amorphous phases of a three block copolymer , 1970 .

[57]  Rachel A. Segalman,et al.  Effects of lateral confinement on order in spherical domain block copolymer thin films , 2003 .

[58]  C. Ross,et al.  Templated Self‐Assembly of Block Copolymers: Effect of Substrate Topography , 2003 .

[59]  P. Nealey,et al.  Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates , 2003, Nature.

[60]  Bates,et al.  Shear-induced isotropic-to-lamellar transition. , 1993, Physical review letters.

[61]  Edwin L. Thomas,et al.  Microphase separation of block copolymer solutions in a flow field , 1993 .

[62]  Julie N. L. Albert,et al.  Systematic study on the effect of solvent removal rate on the morphology of solvent vapor annealed ABA triblock copolymer thin films. , 2012, ACS nano.

[63]  Craig J Hawker,et al.  A Generalized Approach to the Modification of Solid Surfaces , 2005, Science.

[64]  Paul F. Nealey,et al.  Wetting Behavior of Block Copolymers on Self-Assembled Films of Alkylchlorosiloxanes: Effect of Grafting Density , 2000 .

[65]  Jakob Heier,et al.  Transfer of a chemical substrate pattern into an island-forming diblock copolymer film , 1999 .