Cytoplasmic and nuclear maturation of oocytes in mammals – living in the shadow of cells developmental capability

Abstract The pig is a polyestrous animal in which the ovarian cycle lasts about 21 days and results in ovulation of 10-25 oocytes. Ovum reaches 120-150 μm in diameter, with the surrounding corona radiata providing communication with the environment. The zona pellucida is composed of glycoproteins: ZP1, ZP2, ZP3. In the course of oogenesis, RNA and protein accumulation for embryonic development occurs. Maternal mRNA is the template for protein production. Nuclear, cytoplasmic and genomic maturity condition the ability of the ovum to undergo fertilization. There are several differences in protein expression profiles observed between in vitro and in vivo conditions. Oogenesis is the process of differentiating female primary sex cells into gametes. During development gonocytes migrate from the yolk sac into the primary gonads with TGF-1, fibronectin, and laminin regulating this process. Cell cycle is blocked in dictyotene. Primary oocyte maturation is resumed before each ovulation and lasts until the next block in metaphase II. At the moment of penetration of the sperm into the ovum, the metaphase block is broken. The oocytes, surrounded by a single layer of granular cells, form the ovarian follicle. The exchange of signals between the oocyte and the cumulus cells done by gap-junctions, as well as various endo and paracrine signals. The contact between the corona radiata cells provides substances necessary for growth, through the same gap junctions. Studies on follicular cells can be used to amplify the knowledge of gene expression in these cells, in order to open way for potential clinical applications.

[1]  M. Machatkova,et al.  Oestrous cycle stage influences the morphology and maturation of porcine oocytes in vitro , 2018 .

[2]  H. Piotrowska,et al.  Assessment of transcript and protein levels contributing to cell cycle control and gap junction connections in morphologically variable groups of porcine cumulus-oocyte complexes. , 2018 .

[3]  M. Nowicki,et al.  Expression Profile of Genes Regulating Steroid Biosynthesis and Metabolism in Human Ovarian Granulosa Cells—A Primary Culture Approach , 2017, International journal of molecular sciences.

[4]  M. Nowicki,et al.  Genes of cellular components of morphogenesis in porcine oocytes before and after IVM. , 2017, Reproduction.

[5]  M. Nowicki,et al.  The blood vessels development, morphogenesis and blood circulation are three ontologic groups highly up-regulated in porcine oocytes before in vitro maturation , 2017 .

[6]  M. Nowicki,et al.  Expression of genes associated with BMP signaling pathway in porcine oocytes before and after IVM – a microarray approach , 2017, Reproductive Biology and Endocrinology.

[7]  H. Piotrowska,et al.  Expression and cellular distribution of zona pellucida glycoproteins in canine oocytes before and after in vitro maturation , 2014, Zygote.

[8]  P. Lehert,et al.  Predicting live birth chances for women with multiple consecutive failing IVF cycles: a simple and accurate prediction for routine medical practice , 2013, Reproductive Biology and Endocrinology.

[9]  H. Piotrowska,et al.  Zona pellucida glycoprotein 3 (pZP3) and integrin β2 (ITGB2) mRNA and protein expression in porcine oocytes after single and double exposure to brilliant cresyl blue test. , 2011, Theriogenology.

[10]  K. Wigglesworth,et al.  Oocytes determine cumulus cell lineage in mouse ovarian follicles , 2007, Journal of Cell Science.

[11]  Julang Li,et al.  A Growth-Maturation System That Enhances the Meiotic and Developmental Competence of Porcine Oocytes Isolated from Small Follicles1 , 2006, Biology of reproduction.

[12]  C. Guigon,et al.  Minireview. Contribution of Germ Cells to the Differentiation and Maturation of the Ovary: Insights from Models of Germ Cell Depletion , 2006, Biology of reproduction.

[13]  G. Coticchio,et al.  What Criteria for the Definition of Oocyte Quality? , 2004, Annals of the New York Academy of Sciences.

[14]  H. Lankinen,et al.  Immunoneutralization of Growth Differentiation Factor 9 Reveals It Partially Accounts for Mouse Oocyte Mitogenic Activity1 , 2004, Biology of reproduction.

[15]  Martin M. Matzuk,et al.  Intercellular Communication in the Mammalian Ovary: Oocytes Carry the Conversation , 2002, Science.

[16]  A. de Kruif,et al.  Function of the cumulus oophorus before and during mammalian fertilization. , 2002, Reproduction in domestic animals = Zuchthygiene.

[17]  J. Eppig,et al.  Oocyte control of ovarian follicular development and function in mammals. , 2001, Reproduction.

[18]  Y. Yamazaki,et al.  Contribution of cumulus cells and serum to the maturation of oocyte cytoplasm as revealed by intracytoplasmic sperm injection (ICSI) , 2001, Zygote.

[19]  P. Saunders,et al.  Germ cell specific expression of c-kit in the human fetal gonad. , 2001, Molecular human reproduction.

[20]  C. Combelles,et al.  Cellular basis for paracrine regulation of ovarian follicle development. , 2001, Reproduction.

[21]  C. Sellitto,et al.  Oocyte-granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. , 2000, Developmental biology.

[22]  J. Fulka,et al.  Oocyte maturation and embryonic failure. , 1998, Human reproduction update.

[23]  W. Song,et al.  Laminin chain‐specific gene expression during mouse oocyte maturation , 1997, Molecular reproduction and development.

[24]  S. Nishikawa,et al.  Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function. , 1991, Development.

[25]  Bartosz,et al.  The Insight into Developmental Capacity of Mammalian Cocs and Cumulus-Granulosa Cells-Recent Studies and Perspectives , 2016 .

[26]  S. Porowski,et al.  Molekularne aspekty procesu dojrzewania jądrowego i cytoplazmatycznego oocytów u świń , 2013 .

[27]  P. Zawierucha,et al.  Wybrane aspekty zwiazane z zapłodnieniem in vitro u świń , 2012 .

[28]  R. Walczak,et al.  Wybrane metody oceny kompetencji rozwojowej oraz selekcji oocytów i zarodków bydlęcych , 2010 .

[29]  K. Kotarska Ekspansja komorek ziarnistych wzgorka jajonosnego - proces niezbedny do prawidlowego przebiegu owulacji i zaplodnienia , 2009 .

[30]  P. Patrizio,et al.  Molecular methods for selection of the ideal oocyte. , 2007, Reproductive biomedicine online.

[31]  Qing-Yuan Sun,et al.  Evaluation of oocyte quality: morphological, cellular and molecular predictors. , 2007, Reproduction, fertility, and development.

[32]  J. Opiela,et al.  Charakterystyka zdolnosci rozwojowej oocytow ssakow w aspekcie zaplodnienia i rozwoju zarodkowego. Cz. II. Regulacja dojrzalosci cytoplazmatycznej i genomowej , 2005 .

[33]  R. Krisher The effect of oocyte quality on development. , 2004, Journal of animal science.

[34]  J. Opiela,et al.  Charakterystyka zdolnosci rozwojowej oocytow ssakow w aspekcie zaplodnienia i rozwoju zarodkowego: I. Dojrzalosc jadrowa i molekularne aspekty jej regulacji , 2004 .

[35]  P. Laippala,et al.  Correlation between serum inhibin B and other indicators of the ovarian function. , 2001, European journal of obstetrics, gynecology, and reproductive biology.

[36]  M. Matzuk,et al.  Transgenic models to study the roles of inhibins and activins in reproduction, oncogenesis, and development. , 1996, Recent progress in hormone research.

[37]  J. Hershey,et al.  Translational control in mammalian cells. , 1991, Annual review of biochemistry.