Interactive presentation: A new asymmetric SRAM cell to reduce soft errors and leakage power in FPGA

Soft errors in semiconductor memories occur due to charged particle strikes at the cell nodes. In this paper, we present a new asymmetric memory cell to increase the soft error tolerance of SRAM. At the same time, this cell can be used at the reduced supply voltage to decrease the leakage power without significantly increasing the soft error rate of SRAM. A major use of this cell is in the configuration memory of FPGA. The cell is designed using a 70nm process technology and verified using Spice simulations. Soft error tolerance results are presented and compared with standard SRAM cell and an existing increased soft error tolerance cell. Simulation results show that our cell has lowest soft error rate at the various supply voltages.

[1]  Sujit Dey,et al.  A scalable soft spot analysis methodology for compound noise effects in nano-meter circuits , 2004, Proceedings. 41st Design Automation Conference, 2004..

[2]  Yu Cao,et al.  New paradigm of predictive MOSFET and interconnect modeling for early circuit simulation , 2000, Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (Cat. No.00CH37044).

[3]  Narayanan Vijaykrishnan,et al.  Improving soft-error tolerance of FPGA configuration bits , 2004, ICCAD 2004.

[4]  E. Normand Single event upset at ground level , 1996 .

[5]  David Blaauw,et al.  Drowsy caches: simple techniques for reducing leakage power , 2002, ISCA.

[6]  Marty R. Shaneyfelt,et al.  Impact of technology trends on SEU in CMOS SRAMs , 1996 .

[7]  Andreas Moshovos,et al.  Low-leakage asymmetric-cell SRAM , 2003, IEEE Trans. Very Large Scale Integr. Syst..

[8]  Christos A. Papachristou,et al.  Soft delay error effects in CMOS combinational circuits , 2004, 22nd IEEE VLSI Test Symposium, 2004. Proceedings..

[9]  S. Vangal,et al.  Selective node engineering for chip-level soft error rate improvement [in CMOS] , 2002, 2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302).

[10]  N. Seifert,et al.  Robust system design with built-in soft-error resilience , 2005, Computer.

[11]  Christer Svensson,et al.  Neutron induced soft errors in CMOS memories under reduced bias , 1998 .

[12]  F. W. Sexton,et al.  Critical charge concepts for CMOS SRAMs , 1995 .

[13]  P. Hazucha,et al.  Impact of CMOS technology scaling on the atmospheric neutron soft error rate , 2000 .

[14]  B. Granbom,et al.  Soft error rate increase for new generations of SRAMs , 2003 .

[15]  Lorena Anghel,et al.  Cost reduction and evaluation of temporary faults detecting technique , 2000, DATE '00.

[16]  Michael Nicolaidis Special Session 2: Benchmarking and Standardization in Software-Based SER Characterization: Towards an IEEE Task Force? , 2008, 2008 14th IEEE International On-Line Testing Symposium.

[17]  G. R. Srinivasan,et al.  Soft-error Monte Carlo modeling program, SEMM , 1996, IBM J. Res. Dev..

[18]  G. C. Messenger,et al.  Collection of Charge on Junction Nodes from Ion Tracks , 1982, IEEE Transactions on Nuclear Science.

[19]  Mehdi Baradaran Tahoori,et al.  Fault grading FPGA interconnect test configurations , 2002, Proceedings. International Test Conference.

[20]  Mehdi Baradaran Tahoori,et al.  Soft error mitigation for SRAM-based FPGAs , 2005, 23rd IEEE VLSI Test Symposium (VTS'05).

[21]  C. Metra,et al.  A model for transient fault propagation in combinatorial logic , 2003, 9th IEEE On-Line Testing Symposium, 2003. IOLTS 2003..