Cerebellar Modules and Their Role as Operational Cerebellar Processing Units

The compartmentalization of the cerebellum into modules is often used to discuss its function. What, exactly, can be considered a module, how do they operate, can they be subdivided and do they act individually or in concert are only some of the key questions discussed in this consensus paper. Experts studying cerebellar compartmentalization give their insights on the structure and function of cerebellar modules, with the aim of providing an up-to-date review of the extensive literature on this subject. Starting with an historical perspective indicating that the basis of the modular organization is formed by matching olivocorticonuclear connectivity, this is followed by consideration of anatomical and chemical modular boundaries, revealing a relation between anatomical, chemical, and physiological borders. In addition, the question is asked what the smallest operational unit of the cerebellum might be. Furthermore, it has become clear that chemical diversity of Purkinje cells also results in diversity of information processing between cerebellar modules. An additional important consideration is the relation between modular compartmentalization and the organization of the mossy fiber system, resulting in the concept of modular plasticity. Finally, examination of cerebellar output patterns suggesting cooperation between modules and recent work on modular aspects of emotional behavior are discussed. Despite the general consensus that the cerebellum has a modular organization, many questions remain. The authors hope that this joint review will inspire future cerebellar research so that we are better able to understand how this brain structure makes its vital contribution to behavior in its most general form.

[1]  T Fujikado,et al.  Topography of the oculomotor area of the cerebellar vermis in macaques as determined by microstimulation. , 1987, Journal of neurophysiology.

[2]  Ben Deverett,et al.  Cerebellar granule cells acquire a widespread predictive feedback signal during motor learning , 2017, Nature Neuroscience.

[3]  M. Häusser,et al.  Encoding of Oscillations by Axonal Bursts in Inferior Olive Neurons , 2009, Neuron.

[4]  D. Armstrong,et al.  Zonal organization of cortico-nuclear and nucleo-cortical projections of the paramedian lobule of the cat cerebellum. 2. The C2 zone , 1998, Experimental Brain Research.

[5]  Kamran Khodakhah,et al.  The Functional Equivalence of Ascending and Parallel Fiber Inputs in Cerebellar Computation , 2009, The Journal of Neuroscience.

[6]  Mario Manto,et al.  Cerebellar Research: Two Centuries of Discoveries , 2012, The Cerebellum.

[7]  C. Ekerot,et al.  The dorsal spino-olivocerebellar system in the cat , 1979, Experimental Brain Research.

[8]  M Matsushita,et al.  Spinocerebellar projections from the lowest lumbar and sacral‐caudal segments in the cat, as studied by anterograde transport of wheat germ agglutinin‐horseradish peroxidase , 1988, The Journal of comparative neurology.

[9]  Masao Ito,et al.  Consensus Paper: The Cerebellum's Role in Movement and Cognition , 2013, The Cerebellum.

[10]  I. Winship,et al.  Projections from the medial column of the inferior olive to different classes of rotation-sensitive Purkinje cells in the flocculus of pigeons , 1999, Neuroscience Letters.

[11]  C. D. Zeeuw,et al.  The anatomy of fear learning in the cerebellum: A systematic meta-analysis , 2015, Neuroscience & Biobehavioral Reviews.

[12]  T. Ruigrok,et al.  Multiple cerebellar zones are involved in the control of individual muscles: a retrograde transneuronal tracing study with rabies virus in the rat , 2008, The European journal of neuroscience.

[13]  H. Bantli,et al.  The intracerebellar nucleocortical projection in a primate , 1977, Experimental Brain Research.

[14]  K. Spyer,et al.  The influence of lobule IX of the cerebellar posterior vermis on the baroreceptor reflex in the decerebrate rabbit. , 1991, Journal of the autonomic nervous system.

[15]  J. Voogd,et al.  Ultrastructural study of the GABAergic, cerebellar, and mesodiencephalic innervation of the cat medial accessory olive: Anterograde tracing combined with immunocytochemistry , 1989, The Journal of comparative neurology.

[16]  E. J. Lang,et al.  Relationship of complex spike synchrony bands and climbing fiber projection determined by reference to aldolase C compartments in crus IIa of the rat cerebellar cortex , 2007, The Journal of comparative neurology.

[17]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[18]  Zhanmin Lin,et al.  Excitatory Cerebellar Nucleocortical Circuit Provides Internal Amplification during Associative Conditioning , 2016, Neuron.

[19]  Henrik Jörntell,et al.  Processing of Multi-dimensional Sensorimotor Information in the Spinal and Cerebellar Neuronal Circuitry: A New Hypothesis , 2013, PLoS Comput. Biol..

[20]  T. Ruigrok Ins and Outs of Cerebellar Modules , 2010, The Cerebellum.

[21]  Richard Apps,et al.  Heterogeneity of Purkinje cell simple spike–complex spike interactions: zebrin‐ and non‐zebrin‐related variations , 2017, The Journal of physiology.

[22]  H. Jörntell,et al.  Parallel fibre receptive fields of Purkinje cells and interneurons are climbing fibre‐specific , 2001, The European journal of neuroscience.

[23]  Jan Voogd,et al.  The organization of the corticonuclear and olivocerebellar climbing fiber projections to the rat cerebellar vermis: The congruence of projection zones and the zebrin pattern , 2004, Journal of neurocytology.

[24]  Richard Hawkes,et al.  Aldolase C/zebrin II and the regionalization of the cerebellum , 2007, Journal of Molecular Neuroscience.

[25]  Gang Chen,et al.  Parasagittally aligned, mGluR1-dependent patches are evoked at long latencies by parallel fiber stimulation in the mouse cerebellar cortex in vivo. , 2011, Journal of neurophysiology.

[26]  C. Buisseret-Delmas,et al.  The cerebellar olivo-corticonuclear connections in the rat , 1993, Progress in Neurobiology.

[27]  Verhaart Wj The fibrecontent of the superior cerebellar peduncle in the pons and the mesencephalon. , 1956 .

[28]  S. E. Brauth,et al.  Direction-selective single units in the nucleus lentiformis mesencephali of the pigeon (Columba livia) , 2004, Experimental Brain Research.

[29]  Gang Chen,et al.  Reevaluation of the Beam and Radial Hypotheses of Parallel Fiber Action in the Cerebellar Cortex , 2013, The Journal of Neuroscience.

[30]  R. Hawkes,et al.  Zebrin II: A polypeptide antigen expressed selectively by purkinje cells reveals compartments in rat and fish cerebellum , 1990, The Journal of comparative neurology.

[31]  R. Hawkes,et al.  An anatomical model of cerebellar modules. , 1997, Progress in brain research.

[32]  R. Llinás,et al.  Dynamic organization of motor control within the olivocerebellar system , 1995, Nature.

[33]  Daniela Popa,et al.  Cerebellum involvement in cortical sensorimotor circuits for the control of voluntary movements , 2014, Nature Neuroscience.

[34]  Chris I. De Zeeuw,et al.  Climbing Fiber Input Shapes Reciprocity of Purkinje Cell Firing , 2013, Neuron.

[35]  J. Simpson,et al.  Spatial organization of visual messages of the rabbit's cerebellar flocculus. I. Typology of inferior olive neurons of the dorsal cap of Kooy. , 1988, Journal of neurophysiology.

[36]  Farzaneh Najafi,et al.  Coding of stimulus strength via analog calcium signals in Purkinje cell dendrites of awake mice , 2014, eLife.

[37]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.

[38]  C. Sotelo,et al.  Development of the spinocerebellar system in the postnatal rat , 1985, The Journal of comparative neurology.

[39]  Benedetto Sacchetti,et al.  Cerebellar role in fear-conditioning consolidation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[40]  C. I. Zeeuw,et al.  Olivary projecting neurons in the nucleus of Darkschewitsch in the cat receive excitatory monosynaptic input from the cerebellar nuclei , 1994, Brain Research.

[41]  Roy V. Sillitoe,et al.  Cerebellum and Cerebellar Connections , 2015 .

[42]  Martin Paukert,et al.  Zones of Enhanced Glutamate Release from Climbing Fibers in the Mammalian Cerebellum , 2010, The Journal of Neuroscience.

[43]  Izumi Sugihara,et al.  Spatial rearrangement of Purkinje cell subsets forms the transverse and longitudinal compartmentalization in the mouse embryonic cerebellum , 2017, The Journal of comparative neurology.

[44]  Mario Negrello,et al.  Duration of Purkinje cell complex spikes increases with their firing frequency , 2015, Front. Cell. Neurosci..

[45]  Henrik Jörntell,et al.  Cerebellar physiology: links between microcircuitry properties and sensorimotor functions , 2017, The Journal of physiology.

[46]  WF Supple,et al.  The anterior cerebellar vermis: essential involvement in classically conditioned bradycardia in the rabbit , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  R. Hawkes,et al.  Granule cell dispersion is restricted across transverse boundaries in mouse chimeras , 1999, The European journal of neuroscience.

[48]  N. Crowder,et al.  Topographic organization of inferior olive cells projecting to translational zones in the vestibulocerebellum of pigeons , 2000, The Journal of comparative neurology.

[49]  Douglas R Wylie,et al.  Modulation of complex spike activity differs between zebrin-positive and -negative Purkinje cells in the pigeon cerebellum. , 2018, Journal of neurophysiology.

[50]  Henrik Jörntell,et al.  Sensory transmission in cerebellar granule cells relies on similarly coded mossy fiber inputs , 2009, Proceedings of the National Academy of Sciences.

[51]  Gord Fishell,et al.  Math1 Is Expressed in Temporally Discrete Pools of Cerebellar Rhombic-Lip Neural Progenitors , 2005, Neuron.

[52]  Yoshikazu Shinoda,et al.  Cerebellar Nuclei and the Inferior Olivary Nuclei: Organization and Connections , 2021, Handbook of the Cerebellum and Cerebellar Disorders.

[53]  P. Clarke,et al.  Some visual and other connections to the cerebellum of the pigeon , 1977, The Journal of comparative neurology.

[54]  G. Hesslow,et al.  Acquisition, Extinction, and Reacquisition of a Cerebellar Cortical Memory Trace , 2007, The Journal of Neuroscience.

[55]  N. Leclerc,et al.  Antigenic map of the rat cerebellar cortex: The distribution of parasagittal bands as revealed by monoclonal anti‐purkinje cell antibody mabQ113 , 1987, The Journal of comparative neurology.

[56]  P. Strick,et al.  Cerebellar Projections to the Prefrontal Cortex of the Primate , 2001, The Journal of Neuroscience.

[57]  R. Hawkes,et al.  Compartmentation of NADPH‐diaphorase activity in the mouse cerebellar cortex , 1994, The Journal of comparative neurology.

[58]  I. Sugihara,et al.  Projection of reconstructed single purkinje cell axons in relation to the cortical and nuclear aldolase C compartments of the rat cerebellum , 2009, The Journal of comparative neurology.

[59]  J. Voogd,et al.  The parasagittal zonation within the olivocerebellar projection. II. Climbing fiber distribution in the intermediate and hemispheric parts of cat cerebellum , 1979, The Journal of comparative neurology.

[60]  Matsuo Matsushita,et al.  Cerebellar projections of the central cervical nucleus in the rat: an anterograde tracing study , 1991, Neuroscience Research.

[61]  Masahiko Watanabe,et al.  Phospholipase Cβ4 Expression Identifies a Novel Subset of Unipolar Brush Cells in the Adult Mouse Cerebellum , 2009, The Cerebellum.

[62]  Yosef Yarom,et al.  A novel inhibitory nucleo-cortical circuit controls cerebellar Golgi cell activity , 2015, eLife.

[63]  R. Hawkes,et al.  Transverse zones in the vermis of the mouse cerebellum , 1999, The Journal of comparative neurology.

[64]  Martin T. Wiechert,et al.  Synaptic diversity enables temporal coding of coincident multi-sensory inputs in single neurons , 2015, Nature Neuroscience.

[65]  J. Gibson The visual perception of objective motion and subjective movement. , 1994, Psychological review.

[66]  Jean-Luc Dupont,et al.  Stereotyped spatial patterns of functional synaptic connectivity in the cerebellar cortex , 2015, eLife.

[67]  M. Glickstein,et al.  The anatomy of the cerebellum , 1998, Trends in Neurosciences.

[68]  Y. Shinoda,et al.  Molecular, Topographic, and Functional Organization of the Cerebellar Cortex: A Study with Combined Aldolase C and Olivocerebellar Labeling , 2004, The Journal of Neuroscience.

[69]  Henrik Jörntell,et al.  Specific Relationship between Excitatory Inputs and Climbing Fiber Receptive Fields in Deep Cerebellar Nuclear Neurons , 2014, PloS one.

[70]  J. Eilers,et al.  Bassoon Speeds Vesicle Reloading at a Central Excitatory Synapse , 2010, Neuron.

[71]  Henrik Jörntell,et al.  Synaptic Memories Upside Down: Bidirectional Plasticity at Cerebellar Parallel Fiber-Purkinje Cell Synapses , 2006, Neuron.

[72]  C. Ekerot,et al.  Termination in overlapping sagittal zones in cerebellar anterior lobe of mossy and climbing fiber paths activated from dorsal funiculus , 2004, Experimental Brain Research.

[73]  Yosef Yarom,et al.  Cerebellar Inhibitory Input to the Inferior Olive Decreases Electrical Coupling and Blocks Subthreshold Oscillations , 2014, Neuron.

[74]  Bibiana Scelfo,et al.  Long-Term Synaptic Changes Induced in the Cerebellar Cortex by Fear Conditioning , 2004, Neuron.

[75]  G. M. Shambes,et al.  Tactile projections to granule cells in caudal vermis of the rat's cerebellum. , 1978, Brain, behavior and evolution.

[76]  Richard Apps,et al.  Neuronal circuits for fear and anxiety — the missing link , 2015, Nature Reviews Neuroscience.

[77]  T Fujikado,et al.  Saccadic eye movements evoked by microstimulation of lobule VII of the cerebellar vermis of macaque monkeys. , 1987, The Journal of physiology.

[78]  Katrina Y. Choe,et al.  Circuit Mechanisms Underlying Motor Memory Formation in the Cerebellum , 2015, Neuron.

[79]  A. Person,et al.  Rubrocerebellar Feedback Loop Isolates the Interposed Nucleus as an Independent Processor of Corollary Discharge Information in Mice , 2017, The Journal of Neuroscience.

[80]  R. Hawkes,et al.  Functional and antigenic maps in the rat cerebellum: Zebrin compartmentation and vibrissal receptive fields in lobule IXa , 1994, The Journal of comparative neurology.

[81]  Kamran Khodakhah,et al.  The Role of Interneurons in Shaping Purkinje Cell Responses in the Cerebellar Cortex , 2011, The Journal of Neuroscience.

[82]  H. Kuypers,et al.  Collaterals of rubrospinal neurons to the cerebellum in rat. A retrograde fluorescent double labeling study , 1983, Brain Research.

[83]  Tiago Branco,et al.  Control of cerebellar granule cell output by sensory-evoked Golgi cell inhibition , 2015, Proceedings of the National Academy of Sciences.

[84]  P. Thier,et al.  The Role of the Oculomotor Vermis in the Control of Saccadic Eye Movements , 2002, Annals of the New York Academy of Sciences.

[85]  D. Schwarz,et al.  The primary vestibular projection to the cerebellar cortex in the pigeon (Columba livia) , 1983, The Journal of comparative neurology.

[86]  Richard Apps,et al.  The olivo-cerebellar system and its relationship to survival circuits , 2013, Front. Neural Circuits.

[87]  Roger Y Tsien,et al.  A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Michael Häusser,et al.  Multimodal sensory integration in single cerebellar granule cells in vivo , 2015, eLife.

[89]  Richard Apps,et al.  Columnar organisation of the inferior olive projection to the posterior lobe of the rat cerebellum , 1990, The Journal of comparative neurology.

[90]  T J Ebner,et al.  Functional parasagittal compartments in the rat cerebellar cortex: an in vivo optical imaging study using neutral red. , 1996, Journal of neurophysiology.

[91]  Marc Freichel,et al.  TRPC3 Channels Are Required for Synaptic Transmission and Motor Coordination , 2008, Neuron.

[92]  R Angus Silver,et al.  The Contribution of Single Synapses to Sensory Representation in Vivo , 2008, Science.

[93]  M. Ito,et al.  Cerebellar long-term depression: characterization, signal transduction, and functional roles. , 2001, Physiological reviews.

[94]  Richard Hawkes,et al.  Purkinje cell compartmentation as revealed by Zebrin II expression in the cerebellar cortex of pigeons (Columba livia) , 2007, The Journal of comparative neurology.

[95]  K W Ashwell,et al.  Ontogeny of afferents to the fetal rat cerebellum. , 1992, Acta anatomica.

[96]  Richard Apps,et al.  Cerebellar cortical organization: a one-map hypothesis , 2009, Nature Reviews Neuroscience.

[97]  J. Voogd,et al.  Cerebellar nucleo‐olivary projections in the rat: An anterograde tracing study with Phaseolus vulgaris‐leucoagglutinin (PHA‐L) , 1990, The Journal of comparative neurology.

[98]  R Hawkes,et al.  Blebs in the mouse cerebellar granular layer as a sign of structural inhomogeneity. 1. Anterior lobe vermis. , 1997, Acta anatomica.

[99]  J M Bower,et al.  Congruence of mossy fiber and climbing fiber tactile projections in the lateral hemispheres of the rat cerebellum , 2001, The Journal of comparative neurology.

[100]  I. Sugihara,et al.  Projection patterns of single mossy fiber axons originating from the dorsal column nuclei mapped on the aldolase C compartments in the rat cerebellar cortex , 2011, The Journal of comparative neurology.

[101]  T. Kawasaki,et al.  Short-term modulation of cerebellar Purkinje cell activity after spontaneous climbing fiber input. , 1992, Journal of neurophysiology.

[102]  C. Hansel,et al.  The Making of a Complex Spike: Ionic Composition and Plasticity , 2002, Annals of the New York Academy of Sciences.

[103]  Henrik Jörntell,et al.  Organizational Principles of Cerebellar Neuronal Circuitry. , 1998, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[104]  Zhanmin Lin,et al.  Differential Purkinje cell simple spike activity and pausing behavior related to cerebellar modules. , 2015, Journal of neurophysiology.

[105]  K. Spyer,et al.  Cardiovascular and respiratory responses evoked from the posterior cerebellar cortex and fastigial nucleus in the cat. , 1987, The Journal of physiology.

[106]  N. Tsukahara,et al.  Properties of cerebello-precerebellar reverberating circuits , 1983, Brain Research.

[107]  T. Ruigrok,et al.  Collateralization of cerebellar output to functionally distinct brainstem areas. A retrograde, non-fluorescent tracing study in the rat , 2014, Front. Syst. Neurosci..

[108]  R. Snider,et al.  Cerebellar contributions to the papez circuit , 1976, Journal of neuroscience research.

[109]  Richard Hawkes,et al.  Chapter 3 An anatomical model of cerebellar modules , 1997 .

[110]  M Matsushita,et al.  Spinocerebellar projections from the thoracic cord in the cat, as studied by anterograde transport of wheat germ agglutinin‐horseradish peroxidase , 1987, The Journal of comparative neurology.

[111]  Henrik Jörntell,et al.  Cutaneous receptive fields and topography of mossy fibres and climbing fibres projecting to cat cerebellar C3 zone , 1998, The Journal of physiology.

[112]  Freek E. Hoebeek,et al.  Controlling Cerebellar Output to Treat Refractory Epilepsy , 2015, Trends in Neurosciences.

[113]  Piergiorgio Strata,et al.  Reversible inactivation of amygdala and cerebellum but not perirhinal cortex impairs reactivated fear memories , 2007, The European journal of neuroscience.

[114]  Martijn Schonewille,et al.  Mechanisms underlying vestibulo‐cerebellar motor learning in mice depend on movement direction , 2017, The Journal of physiology.

[115]  R. Llinás,et al.  The Functional Organization of the Olivo‐Cerebellar System as Examined by Multiple Purkinje Cell Recordings , 1989, The European journal of neuroscience.

[116]  Germund Hesslow,et al.  Cerebellar control of the inferior olive , 2008, The Cerebellum.

[117]  Izumi Sugihara,et al.  Single axonal morphology and termination to cerebellar aldolase C stripes characterize distinct spinocerebellar projection systems originating from the thoracic spinal cord in the mouse , 2018, The Journal of comparative neurology.

[118]  K W Greve,et al.  Cognitive and emotional sequelae of cerebellar infarct: a case report. , 1999, Archives of clinical neuropsychology : the official journal of the National Academy of Neuropsychologists.

[119]  Werner Graf,et al.  Mapping the oculomotor system: the power of transneuronal labelling with rabies virus , 2002, The European journal of neuroscience.

[120]  R. Hawkes,et al.  Purkinje cell phenotype restricts the distribution of unipolar brush cells , 2009, Neuroscience.

[121]  L. Garriga-Grimau,et al.  [Cerebellar cognitive affective syndrome]. , 2015, Archivos argentinos de pediatria.

[122]  S. Hunt,et al.  Projections of the nucleus of the basal optic root in the pigeon: An autoradiographic and horseradish peroxidase study , 1980, The Journal of comparative neurology.

[123]  D. Angelaki,et al.  Purkinje Cells in Posterior Cerebellar Vermis Encode Motion in an Inertial Reference Frame , 2007, Neuron.

[124]  D. Armstrong,et al.  Zonal organization of cortico-nuclear and nucleo-cortical projections of the paramedian lobule of the cat cerebellum. 1. The C1 zone , 1998, Experimental Brain Research.

[125]  R L Faull,et al.  The cerebellofugal projections in the brachium conjunctivum of the rat. I. The contralateral ascending pathway , , 1978, The Journal of comparative neurology.

[126]  伊藤 正男 The cerebellum and neural control , 1984 .

[127]  Paul D. Gamlin The pretectum: connections and oculomotor-related roles. , 2006, Progress in brain research.

[128]  Ruben Portugues,et al.  Sensorimotor Representations in Cerebellar Granule Cells in Larval Zebrafish Are Dense, Spatially Organized, and Non-temporally Patterned , 2017, Current Biology.

[129]  H. Kuypers,et al.  Divergent axon collaterals from rat cerebellar nuclei to diencephalon, mesencephalon, medulla oblongata and cervical cord , 1982, Experimental Brain Research.

[130]  W. Graf,et al.  Cerebellar inputs to intraparietal cortex areas LIP and MIP: functional frameworks for adaptive control of eye movements, reaching, and arm/eye/head movement coordination. , 2010, Cerebral cortex.

[131]  Rhea R. Kimpo,et al.  Cerebellar Purkinje cell activity drives motor learning , 2013, Nature Neuroscience.

[132]  E. J. Lang,et al.  Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits , 2015, Nature Reviews Neuroscience.

[133]  F A Chaudhry,et al.  The Glutamate Transporter EAAT4 in Rat Cerebellar Purkinje Cells: A Glutamate-Gated Chloride Channel Concentrated near the Synapse in Parts of the Dendritic Membrane Facing Astroglia , 1998, The Journal of Neuroscience.

[134]  O. Oscarsson,et al.  Climbing fiber microzones in cerebellar vermis and their projection to different groups of cells in the lateral vestibular nucleus , 1978, Experimental Brain Research.

[135]  P Strata,et al.  Involvement of cerebellum in emotional behavior. , 2011, Physiological research.

[136]  P. Strick,et al.  Cerebellum and nonmotor function. , 2009, Annual review of neuroscience.

[137]  H. Noda Cerebellar control of saccadic eye movements: its neural mechanisms and pathways. , 1991, The Japanese journal of physiology.

[138]  W. Perrig,et al.  Neuropsychological long-term sequelae after posterior fossa tumour resection during childhood. , 2003, Brain : a journal of neurology.

[139]  Henrik Jörntell,et al.  Reciprocal Bidirectional Plasticity of Parallel Fiber Receptive Fields in Cerebellar Purkinje Cells and Their Afferent Interneurons , 2002, Neuron.

[140]  J. Simpson,et al.  Functional and anatomic organization of three-dimensional eye movements in rabbit cerebellar flocculus. , 1994, Journal of neurophysiology.

[141]  S. Paradiso,et al.  The cerebellum and emotional experience , 2007, Neuropsychologia.

[142]  J. Albus A Theory of Cerebellar Function , 1971 .

[143]  J. Schouenborg,et al.  Topography and nociceptive receptive fields of climbing fibres projecting to the cerebellar anterior lobe in the cat. , 1991, The Journal of physiology.

[144]  G. M. Shambes,et al.  Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. , 1978, Brain, behavior and evolution.

[145]  K. Schilling,et al.  Nitric oxide synthase expression reveals compartments of cerebellar granule cells and suggests a role for mossy fibers in their development , 1994, Neuroscience.

[146]  J. Jansen,et al.  The comparative anatomy and histology of the cerebellum from myxinoids through birds , 1967 .

[147]  C. Jahr,et al.  Patterned expression of Purkinje cell glutamate transporters controls synaptic plasticity , 2005, Nature Neuroscience.

[148]  Thomas Kau,et al.  Behavioral disorders and cognitive impairment associated with cerebellar lesions , 2015, Journal of molecular psychiatry.

[149]  R. Hawkes,et al.  Topography of purkinje cell compartments and mossy fiber terminal fields in lobules ii and iii of the rat cerebellar cortex: Spinocerebellar and cuneocerebellar projections , 1994, Neuroscience.

[150]  D R Wylie,et al.  Projections from the nucleus of the basal optic root and nucleus lentiformis mesencephali to the inferior olive in pigeons (Columba livia) , 2001, The Journal of comparative neurology.

[151]  Gang Chen,et al.  Mutant β-III Spectrin Causes mGluR1α Mislocalization and Functional Deficits in a Mouse Model of Spinocerebellar Ataxia Type 5 , 2014, The Journal of Neuroscience.

[152]  J. V. Burg,et al.  Cerebellar projections to the red nucleus and inferior olive originate from separate populations of neurons in the rat: a non-fluorescent double labeling study , 1995, Brain Research.

[153]  Mitchell Glickstein,et al.  Cerebellum: Connections and Functions , 2008, The Cerebellum.

[154]  Gang Chen,et al.  Cerebellar Cortical Molecular Layer Inhibition Is Organized in Parasagittal Zones , 2006, The Journal of Neuroscience.

[155]  R. Hawkes,et al.  The cloning of zebrin II reveals its identity with aldolase C. , 1994, Development.

[156]  Richard Apps,et al.  Structural Basis of Cerebellar Microcircuits in the Rat , 2013, The Journal of Neuroscience.

[157]  O. Oscarsson Functional units of the cerebellum - sagittal zones and microzones , 1979, Trends in Neurosciences.

[158]  Adam W Hantman,et al.  Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells , 2013, eLife.

[159]  Zhanmin Lin,et al.  Cerebellar modules operate at different frequencies , 2014, eLife.

[160]  N. Crowder,et al.  Zonal organization of the vestibulocerebellum in pigeons (Columba livia): II. Projections of the rotation zones of the flocculus , 2003, The Journal of comparative neurology.

[161]  P. Buisseret,et al.  Cerebellar afferences from the mesencephalic trigeminal nucleus in the rat. , 1995, Neuroreport.

[162]  E. Marg THE ACCESSORY OPTIC SYSTEM * , 1964 .

[163]  Andrew K. Wise,et al.  Systematic Regional Variations in Purkinje Cell Spiking Patterns , 2014, PloS one.

[164]  M. Garwicz,et al.  Functional relation between corticonuclear input and movements evoked on microstimulation in cerebellar nucleus interpositus anterior in the cat , 2004, Experimental Brain Research.

[165]  Shogo Ohmae,et al.  Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice , 2015, Nature Neuroscience.

[166]  Milton Pong,et al.  Functional Relations of Cerebellar Modules of the Cat , 2010, The Journal of Neuroscience.

[167]  Carol A. Mason,et al.  Development of Axon-Target Specificity of Ponto-Cerebellar Afferents , 2011, PLoS biology.

[168]  P. Thier,et al.  Encoding of movement time by populations of cerebellar Purkinje cells , 2000, Nature.

[169]  R. Hawkes,et al.  Compartmentation of the granular layer of the cerebellum. , 1997, Histology and histopathology.

[170]  J. Bower,et al.  Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: vertical organization of cerebellar cortex. , 1983, Journal of neurophysiology.

[171]  Masahiko Watanabe,et al.  Phospholipase cβ4 expression reveals the continuity of cerebellar topography through development , 2007, The Journal of comparative neurology.

[172]  L. Sebastiani,et al.  Purkinje cell responses in the anterior cerebellar vermis during Pavlovian fear conditioning in the rabbit. , 1993, Neuroreport.

[173]  A R Damasio,et al.  Pathological laughter and crying: a link to the cerebellum. , 2001, Brain : a journal of neurology.

[174]  R. Llinás,et al.  Functional linkage between the electrical activity in the vermal cerebellar cortex and saccadic eye movements , 1977, Experimental Brain Research.

[175]  Professor Dr. John C. Eccles,et al.  The Cerebellum as a Neuronal Machine , 1967, Springer Berlin Heidelberg.

[176]  I. Winship,et al.  Zonal organization of the vestibulocerebellum in pigeons (Columba livia): I. Climbing fiber input to the flocculus , 2003, The Journal of comparative neurology.

[177]  David J. Graham,et al.  Distribution of zebrin‐immunoreactive Purkinje cell terminals in the cerebellar and vestibular nuclei of birds , 2012, The Journal of comparative neurology.

[178]  Douglas R Wylie,et al.  Zebrin-Immunopositive and -Immunonegative Stripe Pairs Represent Functional Units in the Pigeon Vestibulocerebellum , 2012, The Journal of Neuroscience.

[179]  Douglas R Wylie,et al.  Organization of the cerebellum: Correlating zebrin immunochemistry with optic flow zones in the pigeon flocculus , 2011, Visual Neuroscience.

[180]  H. Sompolinsky,et al.  Purkinje cells in awake behaving animals operate at the upstate membrane potential , 2006, Nature Neuroscience.

[181]  J. Voogd,et al.  Cerebellar Influence on Olivary Excitability in the Cat , 1995, The European journal of neuroscience.

[182]  Richard Apps,et al.  Neural substrates underlying fear-evoked freezing: the periaqueductal grey–cerebellar link , 2014, The Journal of physiology.

[183]  Egidio D'Angelo,et al.  Granule Cell Ascending Axon Excitatory Synapses onto Golgi Cells Implement a Potent Feedback Circuit in the Cerebellar Granular Layer , 2013, The Journal of Neuroscience.

[184]  Masahiko Watanabe,et al.  Structure–Function Relationships between Aldolase C/Zebrin II Expression and Complex Spike Synchrony in the Cerebellum , 2015, The Journal of Neuroscience.

[185]  Izumi Sugihara,et al.  Olivocerebellar modulation of motor cortex ability to generate vibrissal movements in rat , 2006, The Journal of physiology.

[186]  T. Ebner,et al.  Role of climbing fibers in determining the spatial patterns of activation in the cerebellar cortex to peripheral stimulation: an optical imaging study , 2000, Neuroscience.

[187]  Y Shinoda,et al.  The entire trajectory of single climbing and mossy fibers in the cerebellar nuclei and cortex. , 2000, Progress in brain research.

[188]  O. Oscarsson,et al.  Somatotopic termination of spino-olivocerebellar path. , 1966, Brain research.

[189]  J. Simpson,et al.  Spatial organization of visual messages of the rabbit's cerebellar flocculus. II. Complex and simple spike responses of Purkinje cells. , 1988, Journal of neurophysiology.

[190]  J. Bower,et al.  Spatial correspondence between tactile projection patterns and the distribution of the antigenic Purkinje cell markers anti-zebrin I and anti-zebrin II in the cerebellar folium crus IIa of the rat , 1999, Neuroscience.

[191]  M. Garwicz,et al.  Micro‐Organization of Olivocerebellar and Corticonuclear Connections of the Paravermal Cerebellum in the Cat , 1996, The European journal of neuroscience.

[192]  E. Mugnaini,et al.  The GABAergic cerebello-olivary projection in the rat , 2005, Anatomy and Embryology.

[193]  J. Jansen,et al.  Experimental studies on the intrinsic fibers of the cerebellum. II. The cortico‐nuclear projection , 1940, Cerebellum.

[194]  Richard Apps,et al.  Precise Spatial Relationships between Mossy Fibers and Climbing Fibers in Rat Cerebellar Cortical Zones , 2006, The Journal of Neuroscience.

[195]  Richard Hawkes,et al.  Abnormal Dysbindin Expression in Cerebellar Mossy Fiber Synapses in the mdx Mouse Model of Duchenne Muscular Dystrophy , 2003, The Journal of Neuroscience.

[196]  Henrik Jörntell,et al.  Properties of Somatosensory Synaptic Integration in Cerebellar Granule Cells In Vivo , 2006, The Journal of Neuroscience.

[197]  J. Rawson,et al.  Morphology of parallel fibres in the cerebellar cortex of the rat: An experimental light and electron microscopic study with biocytin , 1994, The Journal of comparative neurology.

[198]  G. Andersson,et al.  Activity of Purkinje cells and interpositus neurones during and after periods of high frequency climbing fibre activation in the cat , 2004, Experimental Brain Research.

[199]  Izumi Sugihara,et al.  Identification of aldolase C compartments in the mouse cerebellar cortex by olivocerebellar labeling , 2007, The Journal of comparative neurology.

[200]  D S Zee,et al.  Effects of lesions of the oculomotor cerebellar vermis on eye movements in primate: smooth pursuit. , 2000, Journal of neurophysiology.

[201]  J. Houk,et al.  Movement-related inputs to intermediate cerebellum of the monkey. , 1993, Journal of neurophysiology.

[202]  Seung-Ha Oh,et al.  Lobule‐specific membrane excitability of cerebellar Purkinje cells , 2012, The Journal of physiology.

[203]  W J VERHAART The fibrecontent of the superior cerebellar peduncle in the pons and the mesencephalon. , 1956, Acta morphologica Neerlando-Scandinavica.

[204]  Richard J. T. Wingate,et al.  Consensus Paper: Cerebellar Development , 2015, The Cerebellum.

[205]  Bin Li,et al.  Medial cerebellar nucleus projects to feeding-related neurons in the ventromedial hypothalamic nucleus in rats , 2017, Brain Structure and Function.

[206]  H. Jörntell,et al.  In Vivo Analysis of Inhibitory Synaptic Inputs and Rebounds in Deep Cerebellar Nuclear Neurons , 2011, PloS one.

[207]  Dieter Jaeger,et al.  Cerebellar Purkinje Cells Generate Highly Correlated Spontaneous Slow-Rate Fluctuations , 2017, Front. Neural Circuits.

[208]  Richard Hawkes,et al.  Zac1 plays a key role in the development of specific neuronal subsets in the mouse cerebellum , 2011, Neural Development.

[209]  C. Ekerot,et al.  Correlation between sagittal projection zones of climbing and mossy fibre paths in cat cerebellar anterior lobe. , 1973, Brain research.

[210]  Peer Wulff,et al.  Evolving Models of Pavlovian Conditioning: Cerebellar Cortical Dynamics in Awake Behaving Mice , 2015, Cell reports.

[211]  Henrik Jörntell,et al.  No Medium-Term Spinocerebellar Input Plasticity in Deep Cerebellar Nuclear Neurons In Vivo? , 2016, The Cerebellum.

[212]  R. Heath,et al.  Ascending projections of the cerebellar fastigial nucleus to the hippocampus, amygdala, and other temporal lobe sites: evoked potential and histological studies in monkeys and cats. , 1974, Experimental neurology.

[213]  Richard Hawkes,et al.  Golgi Cell Dendrites Are Restricted by Purkinje Cell Stripe Boundaries in the Adult Mouse Cerebellar Cortex , 2008, The Journal of Neuroscience.

[214]  R. Harvey,et al.  Quantitatives studies on the mammalian cerebellum , 1991, Progress in Neurobiology.

[215]  Riccardo Zucca,et al.  Climbing Fiber Regulation of Spontaneous Purkinje Cell Activity and Cerebellum-Dependent Blink Responses1,2,3 , 2016, eNeuro.

[216]  J. Rawson,et al.  Evidence that Climbing Fibers Control an Intrinsic Spike Generator in Cerebellar Purkinje Cells , 2004, The Journal of Neuroscience.

[217]  C. Hansel,et al.  A Role for Protein Phosphatases 1, 2A, and 2B in Cerebellar Long-Term Potentiation , 2005, The Journal of Neuroscience.

[218]  J. Courville,et al.  A functionally important feature of the distribution of the olivo-cerebellar climbing fibers. , 1974, Canadian journal of physiology and pharmacology.

[219]  B. Anand,et al.  Cerebellar projections to limbic system. , 1959, Journal of neurophysiology.

[220]  J. Jansen,et al.  Aspects of cerebellar anatomy , 1954 .

[221]  Douglas R Wylie,et al.  Organization of visual mossy fiber projections and zebrin expression in the pigeon vestibulocerebellum , 2010, The Journal of comparative neurology.

[222]  J. Voogd,et al.  Topography of cerebellar nuclear projections to the brain stem in the rat. , 2000, Progress in brain research.

[223]  Douglas R Wylie,et al.  Inferior olivary projection to the zebrin II stripes in lobule IXcd of the pigeon flocculus: A retrograde tracing study , 2017, The Journal of comparative neurology.

[224]  M. Häusser,et al.  Integration of quanta in cerebellar granule cells during sensory processing , 2004, Nature.

[225]  Jan Voogd,et al.  Functional and anatomical organization of floccular zones: A preserved feature in vertebrates , 2004, The Journal of comparative neurology.

[226]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[227]  A. Person,et al.  Cerebellar premotor output neurons collateralize to innervate the cerebellar cortex , 2015, The Journal of comparative neurology.

[228]  Jacquelyn Cranney,et al.  Effects of lesions of the cerebellar vermis on VMH lesion-induced hyperdefensiveness, spontaneous mouse killing, and freezing in rats , 1988, Physiology & Behavior.

[229]  N. Barmack,et al.  Regional and cellular distribution of protein kinase C in rat cerebellar purkinje cells , 2000, The Journal of comparative neurology.

[230]  Sho Aoki,et al.  Multizonal Cerebellar Influence Over Sensorimotor Areas of the Rat Cerebral Cortex , 2019, Cerebral cortex.

[231]  Masao Ito Mechanisms of motor learning in the cerebellum 1 1 Published on the World Wide Web on 24 November 2000. , 2000, Brain Research.

[232]  R. Silver,et al.  Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse , 2006, Nature.

[233]  C. Ekerot,et al.  Topographical organization of the cerebellar cortical projection to nucleus interpositus anterior in the cat. , 1994, The Journal of physiology.

[234]  T. Jessell,et al.  Clarke's Column Neurons as the Focus of a Corticospinal Corollary Circuit , 2010, Nature Neuroscience.

[235]  Roy V Sillitoe,et al.  In vivo analysis of Purkinje cell firing properties during postnatal mouse development. , 2015, Journal of neurophysiology.

[236]  Y Shinoda,et al.  Morphology of single olivocerebellar axons labeled with biotinylated dextran amine in the rat , 1999, The Journal of comparative neurology.

[237]  B. Ghelarducci,et al.  The role of the posterior cerebellar vermis in cardiovascular control , 1991, Neuroscience Research.

[238]  R. N. Leaton,et al.  Lesions of the cerebellar vermis and cerebellar hemispheres: effects on heart rate conditioning in rats. , 1990, Behavioral neuroscience.

[239]  B. Frost,et al.  Responses of pigeon vestibulocerebellar neurons to optokinetic stimulation. II. The 3-dimensional reference frame of rotation neurons in the flocculus. , 1993, Journal of neurophysiology.

[240]  Peter L. Hurd,et al.  Topographic Organization of Inferior Olive Projections to the Zebrin II Stripes in the Pigeon Cerebellar Uvula , 2018, Front. Neuroanat..

[241]  Yoshikazu Shinoda,et al.  Molecular, Topographic, and Functional Organization of the Cerebellar Nuclei: Analysis by Three-Dimensional Mapping of the Olivonuclear Projection and Aldolase C Labeling , 2007, The Journal of Neuroscience.

[242]  E. Mugnaini,et al.  Distribution of unipolar brush cells and other calretinin immunoreactive components in the mammalian cerebellar cortex , 1999, Journal of neurocytology.

[243]  Masahiko Watanabe,et al.  Purkinje cell compartmentation of the cerebellum of microchiropteran bats , 2009, The Journal of comparative neurology.

[244]  Asaid Khateb,et al.  Decoupling of autonomic and cognitive emotional reactions after cerebellar stroke , 2003, Annals of neurology.

[245]  P. Strick,et al.  An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. , 2003, Journal of neurophysiology.

[246]  Richard Apps,et al.  The Distribution of Climbing and Mossy Fiber Collateral Branches from the Copula Pyramidis and the Paramedian Lobule: Congruence of Climbing Fiber Cortical Zones and the Pattern of Zebrin Banding within the Rat Cerebellum , 2003, The Journal of Neuroscience.

[247]  Arnold B. Scheibel Sagittal organization of mossy fiber terminal systems in the cerebellum of the rat: A golgi study , 1977, Experimental Neurology.

[248]  Tycho M. Hoogland,et al.  Strength and timing of motor responses mediated by rebound firing in the cerebellar nuclei after Purkinje cell activation , 2013, Front. Neural Circuits.

[249]  B. Barbour,et al.  Adaptation of Granule Cell to Purkinje Cell Synapses to High-Frequency Transmission , 2012, The Journal of Neuroscience.

[250]  George Paxinos,et al.  Spinal cord projections to the cerebellum in the mouse , 2014, Brain Structure and Function.

[251]  L. Luo,et al.  Cerebellar granule cells encode the expectation of reward , 2017, Nature.

[252]  R. Hawkes,et al.  A novel transverse expression domain in the mouse cerebellum revealed by a neurofilament-associated antigen , 2008, Neuroscience.

[253]  M. Barrot,et al.  Clusters of cerebellar Purkinje cells control their afferent climbing fiber discharge , 2013, Proceedings of the National Academy of Sciences.

[254]  Jan Voogd,et al.  Cerebellar Zones: A Personal History , 2010, The Cerebellum.

[255]  Y. Lamarre,et al.  The Inferior olivary nucleus : anatomy and physiology , 1980 .

[256]  H. Jörntell,et al.  The control of forelimb movements by intermediate cerebellum. , 1997, Progress in brain research.

[257]  J. Bower,et al.  Multiple Purkinje Cell Recording in Rodent Cerebellar Cortex , 1989, The European journal of neuroscience.

[258]  Michael S. Fanselow,et al.  Effects of cerebellar vermal lesions on species-specific fear responses, neophobia, and taste-aversion learning in rats , 1987, Physiology & Behavior.

[259]  Masao Ito Cerebellar learning in the vestibulo–ocular reflex , 1998, Trends in Cognitive Sciences.

[260]  N. Crowder,et al.  Zonal organization of the vestibulocerebellum in pigeons (Columba livia): III. Projections of the translation zones of the ventral uvula and nodulus , 2003, The Journal of comparative neurology.

[261]  Tahl Holtzman,et al.  Electrophysiological Localization of Eyeblink-Related Microzones in Rabbit Cerebellar Cortex , 2010, The Journal of Neuroscience.

[262]  C. Sotelo,et al.  Synaptology of the cerebello-olivary pathway. Double labelling with anterograde axonal tracing and GABA immunocytochemistry in the rat , 1989, Brain Research.

[263]  B. Barbour,et al.  Properties of Unitary Granule Cell→Purkinje Cell Synapses in Adult Rat Cerebellar Slices , 2002, The Journal of Neuroscience.

[264]  D. Timmann,et al.  Neuroscience Letters Cerebellar Vermis Contributes to the Extinction of Conditioned Fear , 2022 .

[265]  Rosalba Parenti,et al.  Projections of the basilar pontine nuclei and nucleus reticularis tegmenti pontis to the cerebellar nuclei of the rat , 2002, The Journal of comparative neurology.

[266]  M. Garwicz,et al.  Anatomical and physiological foundations of cerebellar information processing , 2005, Nature Reviews Neuroscience.

[267]  R. Hawkes,et al.  Pattern formation in the cerebellar cortex. , 2000, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[268]  M. Häusser,et al.  The Origin of the Complex Spike in Cerebellar Purkinje Cells , 2008, The Journal of Neuroscience.

[269]  Richard Hawkes,et al.  Compartmentation of the Cerebellar Cortex: Adaptation to Lifestyle in the Star-Nosed Mole Condylura cristata , 2014, The Cerebellum.

[270]  Andrew K. Wise,et al.  The dynamic relationship between cerebellar Purkinje cell simple spikes and the spikelet number of complex spikes , 2016, The Journal of physiology.

[271]  J. Bower,et al.  Variability in tactile projection patterns to cerebellar folia crus IIa of the norway rat , 1990, The Journal of comparative neurology.

[272]  M. Häusser,et al.  High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons , 2007, Nature.

[273]  George J Augustine,et al.  Precise Control of Movement Kinematics by Optogenetic Inhibition of Purkinje Cell Activity , 2014, The Journal of Neuroscience.