Application of distributed semi-quantum computing model in phase estimation

Abstract We make use of a kind of distributed semi-quantum computing models to study phase estimation. The basic idea is to use distributed micro quantum computers to process respectively a small quantity of quantum states and then communicate with a given classical computer via classical channel to transport the results. We study the phase estimation algorithm basing on this idea and provide a distributed semi-quantum algorithm for phase estimation. Its time complexity in the first stage will not be worse than the existing quantum algorithm of phase estimation, and particularly, has an exponential acceleration in the second stage of phase estimation.

[1]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  Daowen Qiu,et al.  Lower bounds on the size of semi-quantum finite automata , 2015, Theor. Comput. Sci..

[3]  H. S. Allen The Quantum Theory , 1928, Nature.

[4]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[5]  Michele Mosca,et al.  Quantum Computer Algorithms , 2003 .

[6]  J. Cirac,et al.  Distributed quantum computation over noisy channels , 1998, quant-ph/9803017.

[7]  J. Yepez TYPE-II QUANTUM COMPUTERS , 2001 .

[8]  Shenggen Zheng,et al.  Power of the interactive proof systems with verifiers modeled by semi-quantum two-way finite automata , 2013, Inf. Comput..

[9]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[10]  Roland Vollmar,et al.  Quantum Finite Automata , 2006 .

[11]  R. Feynman Simulating physics with computers , 1999 .

[12]  Göran Wendin,et al.  Arbitrary accuracy iterative quantum phase estimation algorithm using a single ancillary qubit: A two-qubit benchmark , 2006, quant-ph/0610214.

[13]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[14]  Shenggen Zheng,et al.  State Succinctness of two-Way finite Automata with quantum and Classical States , 2012, QLSC.

[15]  Reinaldo O. Vianna,et al.  THE SEMI-QUANTUM COMPUTER , 2003 .

[16]  Jozef Gruska,et al.  Quantum Computing , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[17]  Shenggen Zheng,et al.  One-Way Finite Automata with Quantum and Classical States , 2011, Languages Alive.

[18]  Yuan Feng,et al.  On hybrid models of quantum finite automata , 2012, J. Comput. Syst. Sci..

[19]  Shenggen Zheng,et al.  Generalizations of the distributed Deutsch–Jozsa promise problem , 2014, Mathematical Structures in Computer Science.

[20]  Shenggen Zheng,et al.  On the state complexity of semi-quantum finite automata , 2014, RAIRO Theor. Informatics Appl..

[21]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[22]  Shenggen Zheng,et al.  Some Languages Recognized by Two-Way Finite Automata with Quantum and Classical States , 2011, Int. J. Found. Comput. Sci..

[23]  Tal Mor,et al.  Quantum Key Distribution with Classical Bob , 2007, ICQNM.

[24]  Luo Jun,et al.  Experimental Realization of Arbitrary Accuracy Iterative Phase Estimation Algorithms on Ensemble Quantum Computers , 2007 .

[25]  Andris Ambainis,et al.  Two-way finite automata with quantum and classical state , 1999, Theor. Comput. Sci..

[26]  Paulo Mateus,et al.  Exponentially more concise quantum recognition of non-RMM regular languages , 2015, J. Comput. Syst. Sci..