Performance of multielement CdZnTe detectors

Single-element CdZnTe detectors are limited in size, and therefore efficiency, by the poor hole transport, even with a coplanar grid. We are investigating the possibility of a 27-element array using 15 mm X 15 mm X 15 mm elements for gamma-ray energies to 10 MeV for NASA planetary missions. We present experimental results for combinations of various size coplanar grid detectors using NIM electronics and energies to 6.1 MeV. Summation of the signals after linear gating and requiring coincidence produces only a small increase in the energy resolution. Our results indicate that good efficiency and spectrum not complicated by a large Compton continuum can be achieved by simply summing the spectra from 15 X 15 X 15 mm3 detectors for gamma-ray energies below about 2 MeV. Above 2 MeV, 2-fold coincidence might be required, depending on the spectrum, to suppress the Compton continuum and escape peaks. We use a Monte Carlo calculation to predict the performance of the 27-elements array for a lunar highlands spectrum. Such ambient-temperature, high-efficiency, good- resolution arrays will facilitate new NASA mission to determine elemental composition of planetary bodies and terrestrial applications requiring high-efficiency, good- resolution portable instruments.

[1]  Richard D. Starr,et al.  Science applications of the Mars Observer gamma ray spectrometer , 1992 .

[2]  H. B. Barber,et al.  Charge transport in arrays of semiconductor gamma-ray detectors. , 1995, Physical review letters.

[3]  D. Wehe,et al.  Position sensitive single carrier CdZnTe detectors , 1996, 1996 IEEE Nuclear Science Symposium. Conference Record.

[4]  W. Shockley Currents to Conductors Induced by a Moving Point Charge , 1938 .

[5]  D. Wehe,et al.  1-D position sensitive single carrier semiconductor detectors , 1996 .

[6]  Thomas H. Prettyman,et al.  The Lunar Prospector Gamma-Ray Spectrometer , 1996 .

[7]  Zhong He,et al.  Position-sensitive single carrier CdZnTe detectors , 1997 .

[8]  P. A. Russo,et al.  Physics-based generation of gamma-ray response functions for CdZnTe detectors , 1998 .

[9]  K. Hecht Zum Mechanismus des lichtelektrischen Primärstromes in isolierenden Kristallen , 1932 .

[10]  P. Siffert,et al.  High resolution gamma ray spectroscopy with CdTe detector systems , 1992 .

[11]  Igor G. Mitrofanov,et al.  Germanium gamma-ray spectrometer PGS for the MARS-96 mission , 1996, Optics & Photonics.

[12]  Zhong He,et al.  Geometrically weighted semiconductor Frisch grid radiation spectrometers , 1999 .

[13]  Ralph B. James,et al.  On the active volume of cadmium zinc telluride gamma-ray spectrometers , 1997 .

[14]  P. Luke Unipolar charge sensing with coplanar electrodes-application to semiconductor detectors , 1995 .