Relativistic Coulomb Integrals and Zeilberger's Holonomic Systems Approach. I
暂无分享,去创建一个
[1] A. Puchkov,et al. Probabilities of forbidden magnetic-dipole transitions in the hydrogen atom and hydrogen-like ions , 2009 .
[2] Doron Zeilberger,et al. The Method of Creative Telescoping , 1991, J. Symb. Comput..
[3] Ronald F. Boisvert,et al. NIST Handbook of Mathematical Functions , 2010 .
[4] Peter J. Mohr,et al. QED corrections in heavy atoms , 1998 .
[5] S. C. Coutinho. A primer of algebraic D-modules , 1995 .
[6] Frédéric Chyzak,et al. An extension of Zeilberger's fast algorithm to general holonomic functions , 2000, Discret. Math..
[7] D. Solovyev,et al. Influence of external electric fields on multi-photon transitions between the 2s, 2p and 1s levels for hydrogen and antihydrogen atoms and hydrogen-like ions , 2009, 0904.1503.
[8] Two-time Green's function method in quantum electrodynamics of high-/Z few-electron atoms , 2000, physics/0009018.
[9] L. Schiff,et al. Quantum Mechanics, 3rd ed. , 1973 .
[10] V. B. Uvarov,et al. Special Functions of Mathematical Physics: A Unified Introduction with Applications , 1988 .
[11] T. Hänsch,et al. The hydrogen atom : precision physics of simple atomic systems , 2001 .
[12] Michael Karr,et al. Summation in Finite Terms , 1981, JACM.
[13] Christoph Koutschan,et al. Relativistic Coulomb Integrals and Zeilberger's Holonomic Systems Approach II , 2012, AADIOS.
[14] V. Shabaev. Quantum electrodynamics of heavy ions and atoms: current status and prospects , 2008 .
[15] Doron Zeilberger,et al. The Method of Differentiating under the Integral Sign , 1990, J. Symb. Comput..
[16] V. Shabaev. Generalizations of the virial relations for the Dirac equation in a central field and their applications to the Coulomb field , 1991 .
[17] A. Puchkov. The method of matrix elements' calculations for the Dirac equation in the Coulomb field , 2011 .
[18] H. Bethe,et al. Quantum Mechanics of One- and Two-Electron Atoms , 1957 .
[19] C. Darwin,et al. The wave equations of the electron , 1928 .
[20] R. W. Gosper. Decision procedure for indefinite hypergeometric summation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.
[21] S. Brandt,et al. Special Functions of Mathematical Physics , 2011 .
[22] S. Karshenboim,et al. Precision physics of simple atomic systems , 2003 .
[23] Volker Weispfenning,et al. Non-Commutative Gröbner Bases in Algebras of Solvable Type , 1990, J. Symb. Comput..
[24] S. Suslov. Mathematical structure of relativistic Coulomb integrals , 2009, 0911.0111.
[25] V. B. Uvarov,et al. Classical Orthogonal Polynomials of a Discrete Variable , 1991 .
[26] S. Epstein,et al. Some Applications of Hypervirial Theorems to the Calculation of Average Values , 1962 .
[27] D. Zeilberger. A holonomic systems approach to special functions identities , 1990 .
[28] Christoph Koutschan,et al. A Fast Approach to Creative Telescoping , 2010, Math. Comput. Sci..
[29] E. Vrscay,et al. Rayleigh-Schrödinger perturbation theory at large order for radial relativistic Hamiltonians using hypervirial and Hellmann-Feynman theories , 1988 .
[30] W. Gordon. Die Energieniveaus des Wasserstoffatoms nach der Diracschen Quantentheorie des Elektrons , 1928 .
[31] G. Rw. Decision procedure for indefinite hypergeometric summation , 1978 .
[32] Doron Zeilberger. A fast algorithm for proving terminating hypergeometric identities , 2006, Discret. Math..
[33] Christoph Koutschan,et al. Advanced applications of the holonomic systems approach , 2010, ACCA.
[34] S. Suslov. Expectation values in relativistic Coulomb problems , 2009, 0906.3338.
[35] M. Bergh,et al. A PRIMER OF ALGEBRAIC D‐MODULES (London Mathematical Society Student Texts 33) , 1998 .
[36] P. Beiersdorfer. Testing QED and atomic-nuclear interactions with high-Z ions , 2010 .
[37] Carsten Schneider,et al. Parameterized Telescoping Proves Algebraic Independence of Sums , 2008, ArXiv.
[38] K. Beckert,et al. Quantum electrodynamics in strong electric fields: the ground-state Lamb shift in hydrogenlike uranium. , 2005, Physical review letters.
[39] D. Andrae. Recursive evaluation of expectation values for arbitrary states of the relativistic one-electron atom , 1997 .
[40] S. Suslov,et al. The Hahn polynomials in the nonrelativistic and relativistic Coulomb problems , 2007, 0707.1887.
[41] Carsten Schneider,et al. Séminaire Lotharingien de Combinatoire 56 (2007), Article B56b SYMBOLIC SUMMATION ASSISTS COMBINATORICS , 2022 .
[42] Manuel Kauers,et al. The Concrete Tetrahedron - Symbolic Sums, Recurrence Equations, Generating Functions, Asymptotic Estimates , 2011, Texts & Monographs in Symbolic Computation.
[43] Manuel Kauers,et al. The concrete tetrahedron , 2011, ISSAC '11.
[44] Doron Zeilberger,et al. A fast algorithm for proving terminating hypergeometric identities , 1990, Discret. Math..
[45] Marko Petkovšek,et al. A=B : 等式証明とコンピュータ , 1997 .
[46] G. Adkins. Dirac–Coulomb energy levels and expectation values , 2008 .
[47] A. Puchkov,et al. Parity violation effects in hydrogen atom in forbidden magnetic-dipole transitions , 2010 .
[48] J. Linnett,et al. Quantum mechanics , 1975, Nature.
[49] K. Beckert,et al. Precision tests of QED in strong fields: experiments on hydrogen- and helium-like uranium , 2007 .
[50] S. Suslov. Relativistic Kramers–Pasternack recurrence relations , 2009, 0908.3021.