Relativistic Coulomb Integrals and Zeilberger's Holonomic Systems Approach. I

With the help of computer algebra we study the diagonal matrix elements ⟨Or p ⟩, where O \(= \left \{1,\beta,i\boldsymbol{\alpha }\mathbf{n}\beta \right \}\) are the standard Dirac matrix operators and the angular brackets denote the quantum-mechanical average for the relativistic Coulomb problem. Using Zeilberger’s extension of Gosper’s algorithm and a variant to it, three-term recurrence relations for each of these expectation values are derived together with some transformation formulas for the corresponding generalized hypergeometric series. In addition, the virial recurrence relations for these integrals are also found and proved algorithmically.

[1]  A. Puchkov,et al.  Probabilities of forbidden magnetic-dipole transitions in the hydrogen atom and hydrogen-like ions , 2009 .

[2]  Doron Zeilberger,et al.  The Method of Creative Telescoping , 1991, J. Symb. Comput..

[3]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[4]  Peter J. Mohr,et al.  QED corrections in heavy atoms , 1998 .

[5]  S. C. Coutinho A primer of algebraic D-modules , 1995 .

[6]  Frédéric Chyzak,et al.  An extension of Zeilberger's fast algorithm to general holonomic functions , 2000, Discret. Math..

[7]  D. Solovyev,et al.  Influence of external electric fields on multi-photon transitions between the 2s, 2p and 1s levels for hydrogen and antihydrogen atoms and hydrogen-like ions , 2009, 0904.1503.

[8]  Two-time Green's function method in quantum electrodynamics of high-/Z few-electron atoms , 2000, physics/0009018.

[9]  L. Schiff,et al.  Quantum Mechanics, 3rd ed. , 1973 .

[10]  V. B. Uvarov,et al.  Special Functions of Mathematical Physics: A Unified Introduction with Applications , 1988 .

[11]  T. Hänsch,et al.  The hydrogen atom : precision physics of simple atomic systems , 2001 .

[12]  Michael Karr,et al.  Summation in Finite Terms , 1981, JACM.

[13]  Christoph Koutschan,et al.  Relativistic Coulomb Integrals and Zeilberger's Holonomic Systems Approach II , 2012, AADIOS.

[14]  V. Shabaev Quantum electrodynamics of heavy ions and atoms: current status and prospects , 2008 .

[15]  Doron Zeilberger,et al.  The Method of Differentiating under the Integral Sign , 1990, J. Symb. Comput..

[16]  V. Shabaev Generalizations of the virial relations for the Dirac equation in a central field and their applications to the Coulomb field , 1991 .

[17]  A. Puchkov The method of matrix elements' calculations for the Dirac equation in the Coulomb field , 2011 .

[18]  H. Bethe,et al.  Quantum Mechanics of One- and Two-Electron Atoms , 1957 .

[19]  C. Darwin,et al.  The wave equations of the electron , 1928 .

[20]  R. W. Gosper Decision procedure for indefinite hypergeometric summation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[21]  S. Brandt,et al.  Special Functions of Mathematical Physics , 2011 .

[22]  S. Karshenboim,et al.  Precision physics of simple atomic systems , 2003 .

[23]  Volker Weispfenning,et al.  Non-Commutative Gröbner Bases in Algebras of Solvable Type , 1990, J. Symb. Comput..

[24]  S. Suslov Mathematical structure of relativistic Coulomb integrals , 2009, 0911.0111.

[25]  V. B. Uvarov,et al.  Classical Orthogonal Polynomials of a Discrete Variable , 1991 .

[26]  S. Epstein,et al.  Some Applications of Hypervirial Theorems to the Calculation of Average Values , 1962 .

[27]  D. Zeilberger A holonomic systems approach to special functions identities , 1990 .

[28]  Christoph Koutschan,et al.  A Fast Approach to Creative Telescoping , 2010, Math. Comput. Sci..

[29]  E. Vrscay,et al.  Rayleigh-Schrödinger perturbation theory at large order for radial relativistic Hamiltonians using hypervirial and Hellmann-Feynman theories , 1988 .

[30]  W. Gordon Die Energieniveaus des Wasserstoffatoms nach der Diracschen Quantentheorie des Elektrons , 1928 .

[31]  G. Rw Decision procedure for indefinite hypergeometric summation , 1978 .

[32]  Doron Zeilberger A fast algorithm for proving terminating hypergeometric identities , 2006, Discret. Math..

[33]  Christoph Koutschan,et al.  Advanced applications of the holonomic systems approach , 2010, ACCA.

[34]  S. Suslov Expectation values in relativistic Coulomb problems , 2009, 0906.3338.

[35]  M. Bergh,et al.  A PRIMER OF ALGEBRAIC D‐MODULES (London Mathematical Society Student Texts 33) , 1998 .

[36]  P. Beiersdorfer Testing QED and atomic-nuclear interactions with high-Z ions , 2010 .

[37]  Carsten Schneider,et al.  Parameterized Telescoping Proves Algebraic Independence of Sums , 2008, ArXiv.

[38]  K. Beckert,et al.  Quantum electrodynamics in strong electric fields: the ground-state Lamb shift in hydrogenlike uranium. , 2005, Physical review letters.

[39]  D. Andrae Recursive evaluation of expectation values for arbitrary states of the relativistic one-electron atom , 1997 .

[40]  S. Suslov,et al.  The Hahn polynomials in the nonrelativistic and relativistic Coulomb problems , 2007, 0707.1887.

[41]  Carsten Schneider,et al.  Séminaire Lotharingien de Combinatoire 56 (2007), Article B56b SYMBOLIC SUMMATION ASSISTS COMBINATORICS , 2022 .

[42]  Manuel Kauers,et al.  The Concrete Tetrahedron - Symbolic Sums, Recurrence Equations, Generating Functions, Asymptotic Estimates , 2011, Texts & Monographs in Symbolic Computation.

[43]  Manuel Kauers,et al.  The concrete tetrahedron , 2011, ISSAC '11.

[44]  Doron Zeilberger,et al.  A fast algorithm for proving terminating hypergeometric identities , 1990, Discret. Math..

[45]  Marko Petkovšek,et al.  A=B : 等式証明とコンピュータ , 1997 .

[46]  G. Adkins Dirac–Coulomb energy levels and expectation values , 2008 .

[47]  A. Puchkov,et al.  Parity violation effects in hydrogen atom in forbidden magnetic-dipole transitions , 2010 .

[48]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[49]  K. Beckert,et al.  Precision tests of QED in strong fields: experiments on hydrogen- and helium-like uranium , 2007 .

[50]  S. Suslov Relativistic Kramers–Pasternack recurrence relations , 2009, 0908.3021.