Greedy Algorithms for the Shortest Common Superstring That Are Asymptotically Optimal

[1]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[2]  Zhen Zhang,et al.  The shortest common superstring problem: Average case analysis for both exact and approximate matching , 1999, IEEE Trans. Inf. Theory.

[3]  Donald E. Knuth,et al.  The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .

[4]  F. Frances Yao,et al.  Approximating shortest superstrings , 1997, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[5]  Tao Jiang,et al.  Rotations of Periodic Strings and Short Superstrings , 1996, J. Algorithms.

[6]  Wojciech Szpankowski,et al.  A lossy data compression based on an approximate pattern matching , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[7]  Philippe Flajolet,et al.  Mellin Transforms and Asymptotics: Finite Differences and Rice's Integrals , 1995, Theor. Comput. Sci..

[8]  Clifford Stein,et al.  Long tours and short superstrings , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[9]  Paul C. Shields,et al.  The positive-divergence and blowing-up properties , 1994 .

[10]  Wojciech Rytter,et al.  Parallel and Sequential Approximations of Shortest Superstrings , 1994, SWAT.

[11]  Tao Jiang,et al.  Linear approximation of shortest superstrings , 1994, JACM.

[12]  Kenneth S. Alexander,et al.  Shortest Common Superstrings for Strings of Random Letters , 1994, CPM.

[13]  Wojciech Szpankowski,et al.  A Generalized Suffix Tree and its (Un)expected Asymptotic Behaviors , 1993, SIAM J. Comput..

[14]  Esko Ukkonen,et al.  Approximate String-Matching over Suffix Trees , 1993, CPM.

[15]  Philippe Jacquet,et al.  Analysis of digital tries with Markovian dependency , 1991, IEEE Trans. Inf. Theory.

[16]  D. Knuth,et al.  Stable husbands , 1990, SODA '90.

[17]  P. Pevzner 1-Tuple DNA sequencing: computer analysis. , 1989, Journal of biomolecular structure & dynamics.

[18]  Nicole Fassbinder,et al.  Computational Molecular Biology: Sources and Methods for Sequence Analysis , 1989 .

[19]  W. Bains,et al.  A novel method for nucleic acid sequence determination. , 1988, Journal of theoretical biology.

[20]  Wojciech Szpankowski,et al.  The Evaluation of an Alternative Sum With Applications to the Analysis of Some Data Structures , 1988, Inf. Process. Lett..

[21]  B. Pittel Asymptotical Growth of a Class of Random Trees , 1985 .

[22]  David Maier,et al.  On Finding Minimal Length Superstrings , 1980, J. Comput. Syst. Sci..

[23]  P. Billingsley,et al.  Ergodic theory and information , 1966 .

[24]  Clifford Stein,et al.  Short Superstrings and the Structure of Overlapping Strings , 1995, J. Comput. Biol..

[25]  C. Stein,et al.  A 2-3/4-Approximation Algorithm for the Shortest Superstring Problem , 1994 .

[26]  P. Shields Entropy and Prefixes , 1992 .

[27]  Donald William Drury,et al.  The art of computer programming , 1983 .

[28]  D. Knuth The art of computer programming: sorting and searching (volume 3) , 1973 .